Tracking of spaceflight-induced bone remodeling reveals a limited time frame for recovery of resorption sites in humans

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2024-12-20 DOI:10.1126/sciadv.adq3632
Matthias Walle, Leigh Gabel, Danielle E. Whittier, Anna-Maria Liphardt, Paul A. Hulme, Martina Heer, Sara R. Zwart, Scott M. Smith, Jean D. Sibonga, Steven K. Boyd
{"title":"Tracking of spaceflight-induced bone remodeling reveals a limited time frame for recovery of resorption sites in humans","authors":"Matthias Walle, Leigh Gabel, Danielle E. Whittier, Anna-Maria Liphardt, Paul A. Hulme, Martina Heer, Sara R. Zwart, Scott M. Smith, Jean D. Sibonga, Steven K. Boyd","doi":"10.1126/sciadv.adq3632","DOIUrl":null,"url":null,"abstract":"Mechanical unloading causes bone loss, but it remains unclear whether disuse-induced changes to bone microstructure are permanent or can be recovered upon reloading. We examined bone loss and recovery in 17 astronauts using time-lapsed high-resolution peripheral quantitative computed tomography and biochemical markers to determine whether disuse-induced changes are permanent. During 6 months in microgravity, resorption was threefold higher than formation. Upon return to Earth, targeted bone formation occurred in high mechanical strain areas, with 31.8% of bone formed in the first 6 months after flight at sites resorbed during spaceflight, significantly higher than the 2.7% observed 6 to 12 months after return. Limited bone recovery at resorption sites after 6 months on Earth indicates a restricted window for reactivating bone remodeling factors in humans. Incomplete skeletal recovery may arise from these arrested remodeling sites, representing potential targets for new interventions, thus providing means to counteract this long-term health risk for astronauts.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"12 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adq3632","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical unloading causes bone loss, but it remains unclear whether disuse-induced changes to bone microstructure are permanent or can be recovered upon reloading. We examined bone loss and recovery in 17 astronauts using time-lapsed high-resolution peripheral quantitative computed tomography and biochemical markers to determine whether disuse-induced changes are permanent. During 6 months in microgravity, resorption was threefold higher than formation. Upon return to Earth, targeted bone formation occurred in high mechanical strain areas, with 31.8% of bone formed in the first 6 months after flight at sites resorbed during spaceflight, significantly higher than the 2.7% observed 6 to 12 months after return. Limited bone recovery at resorption sites after 6 months on Earth indicates a restricted window for reactivating bone remodeling factors in humans. Incomplete skeletal recovery may arise from these arrested remodeling sites, representing potential targets for new interventions, thus providing means to counteract this long-term health risk for astronauts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Ain't no stoppin' us now…. Meeting metformin again for the first time. The human auditory cortex concurrently tracks syllabic and phonemic timescales via acoustic spectral flux Evolutionary engineering of Saccharomyces cerevisiae : Crafting a synthetic methylotroph via self-reprogramming Approaching the standard quantum limit of a Rydberg-atom microwave electrometer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1