Performance of recurrent neural networks with Monte Carlo dropout for predicting pharmacokinetic parameters from dynamic contrast-enhanced magnetic resonance imaging data.
{"title":"Performance of recurrent neural networks with Monte Carlo dropout for predicting pharmacokinetic parameters from dynamic contrast-enhanced magnetic resonance imaging data.","authors":"Kenya Murase, Atsushi Nakamoto, Noriyuki Tomiyama","doi":"10.1002/acm2.14586","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To quantitatively evaluate the performance of two types of recurrent neural networks (RNNs), long short-term memory (LSTM) and gated recurrent units (GRU), using Monte Carlo dropout (MCD) to predict pharmacokinetic (PK) parameters from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data.</p><p><strong>Methods: </strong>DCE-MRI data for simulation studies were synthesized using the extended Tofts model and a population-averaged arterial input function (AIF). The ranges of PK parameters for training the RNNs were determined from data of patients with brain tumors. The effects of the number of training samples, number of hidden units, dropout rate (DR), and bolus arrival time delay and dispersion in AIF on the accuracy of the PK parameters were investigated, and the uncertainties for different DRs and peak signal-to-noise ratios (PSNRs) were quantified. For comparison, PK parameters were estimated using the nonlinear least-squares method. In the clinical studies, the PK parameter and uncertainty images were generated by applying the trained RNNs to DCE-MRI data.</p><p><strong>Results: </strong>Compared with GRU, the computational cost for training the LSTM was significantly higher. The prediction accuracy of GRU decreased with decreasing numbers of training samples and hidden units, whereas the performance of LSTM remained stable. Despite an increased computational cost, MCD reduced the prediction error at low PSNR and improved the quality of PK parameter images. The simulation results recommended using a DR of 0.25-0.5 at low PSNR and ≤ 0.25 for other PSNRs. The clinical studies recommended using a DR of 0.25 and 0.5 for LSTM and GRU, respectively.</p><p><strong>Conclusions: </strong>MCD is effective in quantifying uncertainty in PK parameter prediction from DCE-MRI data and improves their performance, particularly at low PSNR; however, at the expense of increased computational cost. This study helps deepen our understanding of RNNs with MCD and select suitable hyperparameters for creating an RNN architecture for DCE-MRI studies.</p>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":" ","pages":"e14586"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/acm2.14586","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To quantitatively evaluate the performance of two types of recurrent neural networks (RNNs), long short-term memory (LSTM) and gated recurrent units (GRU), using Monte Carlo dropout (MCD) to predict pharmacokinetic (PK) parameters from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data.
Methods: DCE-MRI data for simulation studies were synthesized using the extended Tofts model and a population-averaged arterial input function (AIF). The ranges of PK parameters for training the RNNs were determined from data of patients with brain tumors. The effects of the number of training samples, number of hidden units, dropout rate (DR), and bolus arrival time delay and dispersion in AIF on the accuracy of the PK parameters were investigated, and the uncertainties for different DRs and peak signal-to-noise ratios (PSNRs) were quantified. For comparison, PK parameters were estimated using the nonlinear least-squares method. In the clinical studies, the PK parameter and uncertainty images were generated by applying the trained RNNs to DCE-MRI data.
Results: Compared with GRU, the computational cost for training the LSTM was significantly higher. The prediction accuracy of GRU decreased with decreasing numbers of training samples and hidden units, whereas the performance of LSTM remained stable. Despite an increased computational cost, MCD reduced the prediction error at low PSNR and improved the quality of PK parameter images. The simulation results recommended using a DR of 0.25-0.5 at low PSNR and ≤ 0.25 for other PSNRs. The clinical studies recommended using a DR of 0.25 and 0.5 for LSTM and GRU, respectively.
Conclusions: MCD is effective in quantifying uncertainty in PK parameter prediction from DCE-MRI data and improves their performance, particularly at low PSNR; however, at the expense of increased computational cost. This study helps deepen our understanding of RNNs with MCD and select suitable hyperparameters for creating an RNN architecture for DCE-MRI studies.
期刊介绍:
Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission.
JACMP will publish:
-Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500.
-Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed.
-Technical Notes: These should be no longer than 3000 words, including key references.
-Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents.
-Book Reviews: The editorial office solicits Book Reviews.
-Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics.
-Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic