Jessica Waibl Polania, Alexandra Hoyt-Miggelbrink, William H. Tomaszewski, Lucas P. Wachsmuth, Selena J. Lorrey, Daniel S. Wilkinson, Emily Lerner, Karolina Woroniecka, John B. Finlay, Katayoun Ayasoufi, Peter E. Fecci
{"title":"Antigen presentation by tumor-associated macrophages drives T cells from a progenitor exhaustion state to terminal exhaustion","authors":"Jessica Waibl Polania, Alexandra Hoyt-Miggelbrink, William H. Tomaszewski, Lucas P. Wachsmuth, Selena J. Lorrey, Daniel S. Wilkinson, Emily Lerner, Karolina Woroniecka, John B. Finlay, Katayoun Ayasoufi, Peter E. Fecci","doi":"10.1016/j.immuni.2024.11.026","DOIUrl":null,"url":null,"abstract":"Whereas terminally exhausted T (Tex_term) cells retain anti-tumor cytotoxic functions, the frequencies of stem-like progenitor-exhausted T (Tex_prog) cells better reflect immunotherapeutic responsivity. Here, we examined the intratumoral cellular interactions that govern the transition to terminal T cell exhaustion. We defined a metric reflecting the intratumoral progenitor exhaustion-to-terminal exhaustion ratio (PETER), which decreased with tumor progression in solid cancers. Single-cell analyses of Tex_prog cells and Tex_term cells in glioblastoma (GBM), a setting of severe T cell exhaustion, revealed disproportionate loss of Tex_prog cells over time. Exhaustion concentrated within tumor-specific T cell subsets, with cognate antigen exposure requisite for acquisition of the Tex_term phenotype. Tumor-associated macrophages (TAMs)—not tumor cells—were the primary source of antigenic exposure governing the Tex_prog to Tex_term transition. TAM depletion increased frequencies of Tex_prog cells in multiple tumor models, increased PETER, and promoted responsiveness to αPD1 immunotherapy. Thus, targeting TAM-T cell interactions may further license checkpoint blockade responses.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"53 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2024.11.026","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Whereas terminally exhausted T (Tex_term) cells retain anti-tumor cytotoxic functions, the frequencies of stem-like progenitor-exhausted T (Tex_prog) cells better reflect immunotherapeutic responsivity. Here, we examined the intratumoral cellular interactions that govern the transition to terminal T cell exhaustion. We defined a metric reflecting the intratumoral progenitor exhaustion-to-terminal exhaustion ratio (PETER), which decreased with tumor progression in solid cancers. Single-cell analyses of Tex_prog cells and Tex_term cells in glioblastoma (GBM), a setting of severe T cell exhaustion, revealed disproportionate loss of Tex_prog cells over time. Exhaustion concentrated within tumor-specific T cell subsets, with cognate antigen exposure requisite for acquisition of the Tex_term phenotype. Tumor-associated macrophages (TAMs)—not tumor cells—were the primary source of antigenic exposure governing the Tex_prog to Tex_term transition. TAM depletion increased frequencies of Tex_prog cells in multiple tumor models, increased PETER, and promoted responsiveness to αPD1 immunotherapy. Thus, targeting TAM-T cell interactions may further license checkpoint blockade responses.
期刊介绍:
Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.