Oxidation of 1,3-Butadiene over Nickel- and Copper-Based Catalysts: Exploring the Effectiveness of Ceria and Niobia Supports

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL Industrial & Engineering Chemistry Research Pub Date : 2024-12-26 DOI:10.1021/acs.iecr.4c03581
Kaushik Sivaramakrishnan, Ali Alabedkhalil, Labeeb Ali, Toyin Shittu, Abbas Khaleel, Mohammednoor Altarawneh
{"title":"Oxidation of 1,3-Butadiene over Nickel- and Copper-Based Catalysts: Exploring the Effectiveness of Ceria and Niobia Supports","authors":"Kaushik Sivaramakrishnan, Ali Alabedkhalil, Labeeb Ali, Toyin Shittu, Abbas Khaleel, Mohammednoor Altarawneh","doi":"10.1021/acs.iecr.4c03581","DOIUrl":null,"url":null,"abstract":"This study investigates the oxidation of 1,3-butadiene (BD), which is a classified hazardous air pollutant with a high degree of toxicity, over the temperature range of 300–650 °C. The intent in this work is to find an efficient method of destroying toxic, carcinogenic, and unstable BD, which can cause storage problems as well and, in the process, exploring the possibility of its conversion to useful industrial starting materials, such as synthesis gas. BD, being an unsaturated hydrocarbon, is reactive to oxidation with the right combination of heterogeneous catalysts. For this purpose, we investigate the role of Ni- and Cu-based catalysts with different loadings on alumina, niobia, and ceria–niobia combinations to track the yield and selectivity of the obtained products in the temperature range of 300–650 °C. The product selectivity and relative yields were obtained through gas chromatography (GC) combined with mass spectrometry and thermal conductivity detector, while Fourier transform infrared spectroscopy (FTIR) is also used to corroborate the GC results. The main objective of this work was to identify the best catalyst for BD oxidation in the low-mid temperature range. Furthermore, in order to investigate the degree of dispersion, morphology, metal–support interactions, surface areas, pore sizes, and redox capabilities of the catalysts and their potential influence on the oxidation reaction, comprehensive characterization methods such as X-ray diffraction, FTIR, scanning electron microscopy with energy-dispersive spectra, nitrogen adsorption and desorption, and hydrogen-temperature-programmed reduction were employed. It is seen that 10% copper loading CeO<sub>2</sub> and Nb<sub>2</sub>O<sub>5</sub> showed optimal catalytic performance with 100% conversion of butadiene and the highest product selectivity at all temperatures. The findings of this study entail a practical environmental application of oxidation reactions in dealing with toxic compounds as constituents of hydrocarbon emissions from exhaust through efficient heterogeneous catalysis.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"147 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c03581","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the oxidation of 1,3-butadiene (BD), which is a classified hazardous air pollutant with a high degree of toxicity, over the temperature range of 300–650 °C. The intent in this work is to find an efficient method of destroying toxic, carcinogenic, and unstable BD, which can cause storage problems as well and, in the process, exploring the possibility of its conversion to useful industrial starting materials, such as synthesis gas. BD, being an unsaturated hydrocarbon, is reactive to oxidation with the right combination of heterogeneous catalysts. For this purpose, we investigate the role of Ni- and Cu-based catalysts with different loadings on alumina, niobia, and ceria–niobia combinations to track the yield and selectivity of the obtained products in the temperature range of 300–650 °C. The product selectivity and relative yields were obtained through gas chromatography (GC) combined with mass spectrometry and thermal conductivity detector, while Fourier transform infrared spectroscopy (FTIR) is also used to corroborate the GC results. The main objective of this work was to identify the best catalyst for BD oxidation in the low-mid temperature range. Furthermore, in order to investigate the degree of dispersion, morphology, metal–support interactions, surface areas, pore sizes, and redox capabilities of the catalysts and their potential influence on the oxidation reaction, comprehensive characterization methods such as X-ray diffraction, FTIR, scanning electron microscopy with energy-dispersive spectra, nitrogen adsorption and desorption, and hydrogen-temperature-programmed reduction were employed. It is seen that 10% copper loading CeO2 and Nb2O5 showed optimal catalytic performance with 100% conversion of butadiene and the highest product selectivity at all temperatures. The findings of this study entail a practical environmental application of oxidation reactions in dealing with toxic compounds as constituents of hydrocarbon emissions from exhaust through efficient heterogeneous catalysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
期刊最新文献
Electrohydrodynamic Forces on a Rigid Core Cylindrical Soft-Particle Close to an Inhomogeneously Charged Flat Electrode Understanding Heat Transfer and the Role of Bed Hydrodynamics in High-Temperature Fluidized Beds Hydrogen Reduction of Iron Oxide Powder in Thin Layers Oxidation of 1,3-Butadiene over Nickel- and Copper-Based Catalysts: Exploring the Effectiveness of Ceria and Niobia Supports Improved Pearson Correlation Coefficient-Based Graph Neural Network for Dynamic Soft Sensor of Polypropylene Industries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1