{"title":"Robotic grinding of curved parts with two degrees of freedom active compliant force-controlled end-effector using decoupling control algorithm","authors":"Haiqing Chen, Jixiang Yang, Han Ding","doi":"10.1016/j.rcim.2024.102935","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel two degrees of freedom (2-DOF) active compliant force-controlled end-effector (EE) using decoupling control algorithm to improve grinding efficiency, material removal accuracy, and surface quality of the curved parts for robotic grinding. First, a robotic grinding system is described, which consists of an industrial robot for tool-path control and a novel 2-DOF compliant EE to improve grinding efficiency and compliance. Second, the dynamic relationship between the friction coefficient and the normal force is established to develop an online prediction model for the normal force. The tangential tool tip displacement model is also established. A force-position decoupling control algorithm, which comprises force–position decoupling and fuzzy force–position switching controllers, is then proposed to improve the normal force and the tangential tool tip displacement control accuracy of the 2-DOF compliant EE. Finally, the developed methodology is validated through grinding experiments to confirm its effectiveness. The grinding results show that under the premise of ensuring the neglectable tangential tool tip displacement error to the original grinding process, the developed 2-DOF compliant EE with decoupling control demonstrates similar high force control accuracy and grinding depth accuracy to the 1-DOF compliant EE, and the machining efficiency is improved by approximately 30 % compared to that of the 1-DOF compliant EE. Compared with the traditional 2-DOF rigid EE using hybrid control, the normal force and tangential tool tip displacement control errors of the developed 2-DOF compliant EE with decoupling control are reduced by approximately 60 % and 33 %, respectively, and the overshoot is reduced from 30 % to almost 0. The developed 2-DOF compliant EE with decoupling control improves the grinding depth accuracy and surface quality compared to the traditional 2-DOF rigid EE with hybrid control.","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"2 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.rcim.2024.102935","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a novel two degrees of freedom (2-DOF) active compliant force-controlled end-effector (EE) using decoupling control algorithm to improve grinding efficiency, material removal accuracy, and surface quality of the curved parts for robotic grinding. First, a robotic grinding system is described, which consists of an industrial robot for tool-path control and a novel 2-DOF compliant EE to improve grinding efficiency and compliance. Second, the dynamic relationship between the friction coefficient and the normal force is established to develop an online prediction model for the normal force. The tangential tool tip displacement model is also established. A force-position decoupling control algorithm, which comprises force–position decoupling and fuzzy force–position switching controllers, is then proposed to improve the normal force and the tangential tool tip displacement control accuracy of the 2-DOF compliant EE. Finally, the developed methodology is validated through grinding experiments to confirm its effectiveness. The grinding results show that under the premise of ensuring the neglectable tangential tool tip displacement error to the original grinding process, the developed 2-DOF compliant EE with decoupling control demonstrates similar high force control accuracy and grinding depth accuracy to the 1-DOF compliant EE, and the machining efficiency is improved by approximately 30 % compared to that of the 1-DOF compliant EE. Compared with the traditional 2-DOF rigid EE using hybrid control, the normal force and tangential tool tip displacement control errors of the developed 2-DOF compliant EE with decoupling control are reduced by approximately 60 % and 33 %, respectively, and the overshoot is reduced from 30 % to almost 0. The developed 2-DOF compliant EE with decoupling control improves the grinding depth accuracy and surface quality compared to the traditional 2-DOF rigid EE with hybrid control.
期刊介绍:
The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.