L. Panarella, Q. Smets, D. Verreck, B. Kaczer, S. Tyaginov, C. Lockhart de la Rosa, G. S. Kar, V. Afanas’ev
{"title":"Implications of side contact depth on the Schottky barrier of 2D field-effect transistors","authors":"L. Panarella, Q. Smets, D. Verreck, B. Kaczer, S. Tyaginov, C. Lockhart de la Rosa, G. S. Kar, V. Afanas’ev","doi":"10.1007/s10825-024-02262-6","DOIUrl":null,"url":null,"abstract":"<div><p>The performance of 2D material-based field-effect transistors (2D FETs) is significantly influenced by the vertical extension, or depth, of electrostatically doped side Schottky contacts, which is determined through etching. This study employs TCAD modeling to compare back-gated FETs with varying source/drain contact depths and channel lengths. Results indicate that deeper side contacts hinder electric field crowding at the metal/channel interface, resulting in wider Schottky barriers, diminished carrier tunneling, and reduced on-state current. In contrast, introducing a low-k dielectric beneath the source and drain yields the opposite effect. Therefore, in the development of industry-compatible 2D FETs, the depth and design of side contacts must be carefully optimized, as they are critical factors in achieving low-contact resistance devices.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10825-024-02262-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02262-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The performance of 2D material-based field-effect transistors (2D FETs) is significantly influenced by the vertical extension, or depth, of electrostatically doped side Schottky contacts, which is determined through etching. This study employs TCAD modeling to compare back-gated FETs with varying source/drain contact depths and channel lengths. Results indicate that deeper side contacts hinder electric field crowding at the metal/channel interface, resulting in wider Schottky barriers, diminished carrier tunneling, and reduced on-state current. In contrast, introducing a low-k dielectric beneath the source and drain yields the opposite effect. Therefore, in the development of industry-compatible 2D FETs, the depth and design of side contacts must be carefully optimized, as they are critical factors in achieving low-contact resistance devices.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.