In Vitro and In Vivo Pharmacokinetic Characterization of 7-Hydroxymitragynine, an Active Metabolite of Mitragynine, in Sprague-Dawley Rats.

IF 1.9 4区 医学 Q3 PHARMACOLOGY & PHARMACY European Journal of Drug Metabolism and Pharmacokinetics Pub Date : 2025-03-22 DOI:10.1007/s13318-025-00939-2
Yi-Hua Chiang, Siva Rama Raju Kanumuri, Michelle A Kuntz, Alexandria S Senetra, Erin C Berthold, Shyam H Kamble, Sushobhan Mukhopadhyay, Aidan J Hampson, Christopher R McCurdy, Abhisheak Sharma
{"title":"In Vitro and In Vivo Pharmacokinetic Characterization of 7-Hydroxymitragynine, an Active Metabolite of Mitragynine, in Sprague-Dawley Rats.","authors":"Yi-Hua Chiang, Siva Rama Raju Kanumuri, Michelle A Kuntz, Alexandria S Senetra, Erin C Berthold, Shyam H Kamble, Sushobhan Mukhopadhyay, Aidan J Hampson, Christopher R McCurdy, Abhisheak Sharma","doi":"10.1007/s13318-025-00939-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Kratom, a Southeast Asian tree, has been researched for its potential as a therapeutic for substance use disorders. The most abundant alkaloid in kratom, mitragynine, is being investigated individually for opioid use disorder. However, the active metabolite of mitragynine,7-hydroxymitragynine (7-HMG) has raised concerns because of its high binding affinity to μ-opioid receptors and abuse potential. This study examines various pharmacokinetic parameters of 7-HMG in both in vitro and in vivo models.</p><p><strong>Methods: </strong>In vitro pharmacokinetic properties were investigated using human colorectal adenocarcinoma cell monolayers (Caco-2 cells), rat plasma, rat liver microsomes, and rat hepatocytes to determine the permeability, plasma protein binding, and microsomal and hepatocyte stability of 7-HMG, respectively. Oral and intravenous (IV) pharmacokinetic studies of 7-HMG were performed in male Sprague-Dawley rats.</p><p><strong>Results: </strong>7-HMG exhibits high permeability across Caco-2 cells (19.7 ± 1.0 × 10<sup>-6</sup> cm/s), with a relatively low plasma protein binding of 73.1 ± 0.6% to mitragynine. The hepatic extraction ratio was 0.3 and 0.6 in rat liver microsomes and hepatocytes, respectively, indicating that 7-HMG is an intermediate hepatic extraction compound. Oral and IV pharmacokinetic studies were performed in male rats. The volume of distribution was 2.7 ± 0.4 l/kg and the clearance was 4.0 ± 0.3 l/h/kg after IV administration. After oral dosing (5 mg/kg), a C<sub>max</sub> of 28.5 ± 5.0 ng/ml and T<sub>max</sub> of 0.3 ± 0.1 h were observed. However, the oral bioavailability of 7-HMG was only 2.7 ± 0.3%. The results demonstrate 7-HMG is rapidly absorbed but has low oral bioavailability. Mitragynine pseudoindoxyl (MGPI) is a metabolite of 7-HMG that is a more potent µ-opioid agonist than 7-HMG. The parent-to-metabolite ratio for MGPI following IV 7-HMG administration was 0.5 ± 0.1%, indicating very limited systemic exposure to MGPI.</p><p><strong>Conclusions: </strong>This study reports the pharmacokinetic parameters of 7-HMG to help with the development of mitragynine, as a therapeutic.</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13318-025-00939-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objectives: Kratom, a Southeast Asian tree, has been researched for its potential as a therapeutic for substance use disorders. The most abundant alkaloid in kratom, mitragynine, is being investigated individually for opioid use disorder. However, the active metabolite of mitragynine,7-hydroxymitragynine (7-HMG) has raised concerns because of its high binding affinity to μ-opioid receptors and abuse potential. This study examines various pharmacokinetic parameters of 7-HMG in both in vitro and in vivo models.

Methods: In vitro pharmacokinetic properties were investigated using human colorectal adenocarcinoma cell monolayers (Caco-2 cells), rat plasma, rat liver microsomes, and rat hepatocytes to determine the permeability, plasma protein binding, and microsomal and hepatocyte stability of 7-HMG, respectively. Oral and intravenous (IV) pharmacokinetic studies of 7-HMG were performed in male Sprague-Dawley rats.

Results: 7-HMG exhibits high permeability across Caco-2 cells (19.7 ± 1.0 × 10-6 cm/s), with a relatively low plasma protein binding of 73.1 ± 0.6% to mitragynine. The hepatic extraction ratio was 0.3 and 0.6 in rat liver microsomes and hepatocytes, respectively, indicating that 7-HMG is an intermediate hepatic extraction compound. Oral and IV pharmacokinetic studies were performed in male rats. The volume of distribution was 2.7 ± 0.4 l/kg and the clearance was 4.0 ± 0.3 l/h/kg after IV administration. After oral dosing (5 mg/kg), a Cmax of 28.5 ± 5.0 ng/ml and Tmax of 0.3 ± 0.1 h were observed. However, the oral bioavailability of 7-HMG was only 2.7 ± 0.3%. The results demonstrate 7-HMG is rapidly absorbed but has low oral bioavailability. Mitragynine pseudoindoxyl (MGPI) is a metabolite of 7-HMG that is a more potent µ-opioid agonist than 7-HMG. The parent-to-metabolite ratio for MGPI following IV 7-HMG administration was 0.5 ± 0.1%, indicating very limited systemic exposure to MGPI.

Conclusions: This study reports the pharmacokinetic parameters of 7-HMG to help with the development of mitragynine, as a therapeutic.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Big Building Data - a Big Data Platform for Smart Buildings
IF 0 Energy ProcediaPub Date : 2017-09-01 DOI: 10.1016/j.egypro.2017.07.354
Lucy Linder , Damien Vionnet , Jean-Philippe Bacher , Jean Hennebert
Big Building Data 2.0 - a Big Data Platform for Smart Buildings
IF 0 Journal of Physics: Conference SeriesPub Date : 2021-11-01 DOI: 10.1088/1742-6596/2042/1/012016
Lucy Linder, Frédéric Montet, J. Hennebert, J. Bacher
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
64
审稿时长
>12 weeks
期刊介绍: Hepatology International is a peer-reviewed journal featuring articles written by clinicians, clinical researchers and basic scientists is dedicated to research and patient care issues in hepatology. This journal focuses mainly on new and emerging diagnostic and treatment options, protocols and molecular and cellular basis of disease pathogenesis, new technologies, in liver and biliary sciences. Hepatology International publishes original research articles related to clinical care and basic research; review articles; consensus guidelines for diagnosis and treatment; invited editorials, and controversies in contemporary issues. The journal does not publish case reports.
期刊最新文献
In Vitro and In Vivo Pharmacokinetic Characterization of 7-Hydroxymitragynine, an Active Metabolite of Mitragynine, in Sprague-Dawley Rats. Development of a Physiologically-Based Pharmacokinetic Model for Quantitative Interpretation of Transdermal Drug Delivery of Rotigotine, a Dopamine Agonist for Treating Parkinson's Disease. Determination of Intrinsic Clearance and Fraction Unbound in Human Liver Microsomes and In Vitro-In Vivo Extrapolation of Human Hepatic Clearance for Marketed Central Nervous System Drugs. Herb-Drug Interaction of Total Glucosides of Paeony and Tripterygium Glycoside with Celecoxib in Beagle Dogs by UPLC-MS/MS. Leveraging Model-Based Simulations to Optimize Extended Dosing of Leuprolide 6-Month Intramuscular Depot Formulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1