Eun Young Kim , Jayoun Kim , Jae Hoon Jeong , Jinhyeok Jang , Nuree Kang , Jieun Seo , Young Eun Park , Jiae Park , Hyunsu Jeong , Yong Min Ahn , Yong Sik Kim , Donghwan Lee , Se Hyun Kim
{"title":"Machine learning prediction model of the treatment response in schizophrenia reveals the importance of metabolic and subjective characteristics","authors":"Eun Young Kim , Jayoun Kim , Jae Hoon Jeong , Jinhyeok Jang , Nuree Kang , Jieun Seo , Young Eun Park , Jiae Park , Hyunsu Jeong , Yong Min Ahn , Yong Sik Kim , Donghwan Lee , Se Hyun Kim","doi":"10.1016/j.schres.2024.12.018","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting early treatment response in schizophrenia is pivotal for selecting the best therapeutic approach. Utilizing machine learning (ML) technique, we aimed to formulate a model predicting antipsychotic treatment outcomes. Data were obtained from 299 patients with schizophrenia from three multicenter, open-label, non-comparative clinical trials. For prediction of treatment response at weeks 4, 8, and 24, psychopathology (both objective and subjective symptoms), sociodemographic and clinical factors, functional outcomes, attitude toward medication, and metabolic characteristics were evaluated. Various ML techniques were applied. The highest area under the curve (AUC) at weeks 4, 8 and 24 was 0.711, 0.664 and 0.678 with extreme gradient boosting, respectively. Notably, our findings indicate that BMI and attitude toward medication play a pivotal role in predicting treatment responses at all-time points. Other salient features for weeks 4 and 8 included psychosocial functioning, negative symptoms, subjective symptoms like psychoticism and hostility, and the level of prolactin. For week 24, positive symptoms, depression, education level and duration of illness were also important. This study introduced a precise clinical model for predicting schizophrenia treatment outcomes using multiple readily accessible predictors. The findings underscore the significance of metabolic parameters and subjective traits.</div></div>","PeriodicalId":21417,"journal":{"name":"Schizophrenia Research","volume":"275 ","pages":"Pages 146-155"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920996424005176","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting early treatment response in schizophrenia is pivotal for selecting the best therapeutic approach. Utilizing machine learning (ML) technique, we aimed to formulate a model predicting antipsychotic treatment outcomes. Data were obtained from 299 patients with schizophrenia from three multicenter, open-label, non-comparative clinical trials. For prediction of treatment response at weeks 4, 8, and 24, psychopathology (both objective and subjective symptoms), sociodemographic and clinical factors, functional outcomes, attitude toward medication, and metabolic characteristics were evaluated. Various ML techniques were applied. The highest area under the curve (AUC) at weeks 4, 8 and 24 was 0.711, 0.664 and 0.678 with extreme gradient boosting, respectively. Notably, our findings indicate that BMI and attitude toward medication play a pivotal role in predicting treatment responses at all-time points. Other salient features for weeks 4 and 8 included psychosocial functioning, negative symptoms, subjective symptoms like psychoticism and hostility, and the level of prolactin. For week 24, positive symptoms, depression, education level and duration of illness were also important. This study introduced a precise clinical model for predicting schizophrenia treatment outcomes using multiple readily accessible predictors. The findings underscore the significance of metabolic parameters and subjective traits.
期刊介绍:
As official journal of the Schizophrenia International Research Society (SIRS) Schizophrenia Research is THE journal of choice for international researchers and clinicians to share their work with the global schizophrenia research community. More than 6000 institutes have online or print (or both) access to this journal - the largest specialist journal in the field, with the largest readership!
Schizophrenia Research''s time to first decision is as fast as 6 weeks and its publishing speed is as fast as 4 weeks until online publication (corrected proof/Article in Press) after acceptance and 14 weeks from acceptance until publication in a printed issue.
The journal publishes novel papers that really contribute to understanding the biology and treatment of schizophrenic disorders; Schizophrenia Research brings together biological, clinical and psychological research in order to stimulate the synthesis of findings from all disciplines involved in improving patient outcomes in schizophrenia.