QTL mapping of stem rust resistance in a Bill Brown/Gage winter wheat population

IF 2 3区 农林科学 Q2 AGRONOMY Crop Science Pub Date : 2025-01-05 DOI:10.1002/csc2.21445
Tadele T. Kumssa, P. S. Baenziger, M. N. Rouse, Waseem Hussain, Vikas Belamkar, Stephen N. Wegulo, Jesse Poland
{"title":"QTL mapping of stem rust resistance in a Bill Brown/Gage winter wheat population","authors":"Tadele T. Kumssa, P. S. Baenziger, M. N. Rouse, Waseem Hussain, Vikas Belamkar, Stephen N. Wegulo, Jesse Poland","doi":"10.1002/csc2.21445","DOIUrl":null,"url":null,"abstract":"The wheat (<i>Triticum</i> spp.) stem rust pathogen, <i>Puccinia graminis</i> f. sp. <i>tritici</i> Eriks. and E. Henn. (<i>Pgt</i>), has continued to be a devastating biotic stress in wheat production. Over previous decades, scientists have identified several resistance genes effective against <i>Pgt</i>. However, the ever-evolving <i>Pgt</i> and low availability of durable resistance necessitates continuous identification and wise deployment of resistance genes. To elucidate the identity of our previously reported stem rust resistance in hard red winter wheat cultivar Gage, we used recombinant inbred lines (RILs) developed from the cross of Bill Brown × Gage and evaluated them for 3 years for response to six different stem rust pathogen races individually at the seedling stage in the greenhouse and a mixture of these races in the field. Using molecular markers, we determined the genomic regions that affect stem rust resistance in Gage, which identified two quantitative trait loci (QTLs) at the seedling stage and one major QTL at the adult stage, giving insight into why Gage has superior stem rust resistance. The seedling stem rust resistance was from <i>SrTmp</i> and likely from an <i>Sr7</i> allele. QTLs conferring adult plant resistance in Gage were mainly from <i>Sr2</i>, but molecular analysis suggested additional minor-effect QTLs were involved.","PeriodicalId":10849,"journal":{"name":"Crop Science","volume":"37 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/csc2.21445","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

The wheat (Triticum spp.) stem rust pathogen, Puccinia graminis f. sp. tritici Eriks. and E. Henn. (Pgt), has continued to be a devastating biotic stress in wheat production. Over previous decades, scientists have identified several resistance genes effective against Pgt. However, the ever-evolving Pgt and low availability of durable resistance necessitates continuous identification and wise deployment of resistance genes. To elucidate the identity of our previously reported stem rust resistance in hard red winter wheat cultivar Gage, we used recombinant inbred lines (RILs) developed from the cross of Bill Brown × Gage and evaluated them for 3 years for response to six different stem rust pathogen races individually at the seedling stage in the greenhouse and a mixture of these races in the field. Using molecular markers, we determined the genomic regions that affect stem rust resistance in Gage, which identified two quantitative trait loci (QTLs) at the seedling stage and one major QTL at the adult stage, giving insight into why Gage has superior stem rust resistance. The seedling stem rust resistance was from SrTmp and likely from an Sr7 allele. QTLs conferring adult plant resistance in Gage were mainly from Sr2, but molecular analysis suggested additional minor-effect QTLs were involved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Crop Science
Crop Science 农林科学-农艺学
CiteScore
4.50
自引率
8.70%
发文量
197
审稿时长
3 months
期刊介绍: Articles in Crop Science are of interest to researchers, policy makers, educators, and practitioners. The scope of articles in Crop Science includes crop breeding and genetics; crop physiology and metabolism; crop ecology, production, and management; seed physiology, production, and technology; turfgrass science; forage and grazing land ecology and management; genomics, molecular genetics, and biotechnology; germplasm collections and their use; and biomedical, health beneficial, and nutritionally enhanced plants. Crop Science publishes thematic collections of articles across its scope and includes topical Review and Interpretation, and Perspectives articles.
期刊最新文献
QTL mapping of stem rust resistance in a Bill Brown/Gage winter wheat population Unveiling loose smut resistance in Indian bread wheat germplasm: Gene postulation and pedigree analysis High plant density optimizes leaf stomatal traits for accelerating the stomatal response rate at the lower cotton canopy Predictive analytics of selections of russet potatoes Performance and recovery of turfgrasses irrigated with varying crop coefficients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1