{"title":"Fluorescence enabled phonon counting in an erbium-doped piezo-optomechanical microcavity","authors":"Likai Yang, Jiacheng Xie, Hong X. Tang","doi":"10.1515/nanoph-2024-0400","DOIUrl":null,"url":null,"abstract":"Converting phonons to photons with optomechanical interaction provides a pathway to realize single phonon counting, which is instrumental in the quantum applications of mechanical systems such as entanglement generation, thermometry, and study of macroscopic quantum phenomenon. In this process, the key requirement is high-extinction, narrow-bandwidth, and stable filtering of the parametric optical pump. Here, we propose to lift this necessity by counting fluorescence emission from a rare earth embedded optomechanical cavity. By doing so, we show that an equivalent filtering effect can be achieved due to spectral hole burning and cavity Purcell effect. To demonstrate this, we designed, fabricated, and characterized an integrated piezo-optomechanical Fabry–Perot cavity on the erbium-doped thin-film lithium niobate platform. By collecting fluorescence from the optomechanical sideband, we show that 93 dB suppression of the pump can be achieved with 10 dB loss of signal, resulting in an increase of 83 dB in sideband-pump ratio. Our results facilitate a route to realize filterless single phonon counting and also create new opportunities to study the interaction between solid state emitters and mechanical systems.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"2 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0400","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Converting phonons to photons with optomechanical interaction provides a pathway to realize single phonon counting, which is instrumental in the quantum applications of mechanical systems such as entanglement generation, thermometry, and study of macroscopic quantum phenomenon. In this process, the key requirement is high-extinction, narrow-bandwidth, and stable filtering of the parametric optical pump. Here, we propose to lift this necessity by counting fluorescence emission from a rare earth embedded optomechanical cavity. By doing so, we show that an equivalent filtering effect can be achieved due to spectral hole burning and cavity Purcell effect. To demonstrate this, we designed, fabricated, and characterized an integrated piezo-optomechanical Fabry–Perot cavity on the erbium-doped thin-film lithium niobate platform. By collecting fluorescence from the optomechanical sideband, we show that 93 dB suppression of the pump can be achieved with 10 dB loss of signal, resulting in an increase of 83 dB in sideband-pump ratio. Our results facilitate a route to realize filterless single phonon counting and also create new opportunities to study the interaction between solid state emitters and mechanical systems.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.