Akeshi Aththanayake, Andrew Lininger, Cataldo Strangi, Mark A. Griswold, Giuseppe Strangi
{"title":"Tunable holographic metasurfaces for augmented and virtual reality","authors":"Akeshi Aththanayake, Andrew Lininger, Cataldo Strangi, Mark A. Griswold, Giuseppe Strangi","doi":"10.1515/nanoph-2024-0734","DOIUrl":null,"url":null,"abstract":"Augmented and virtual reality (AR/VR) is transforming how humans interact with technology in a wide range of fields and industries, from healthcare and education to entertainment. However, current device limitations have impeded wider integration. Tunable holographic metasurfaces represent a promising platform for revolutionizing AR/VR devices by precisely controlling light at the subwavelength scale. This article examines current challenges and opportunities from both the AR/VR and holographic metamaterial perspectives and explores how improvements to state-of-the-art approaches can address these challenges. In particular, we propose a focus on easily manufacturable and broadly electrically tunable metasurface technologies including liquid crystal integration and excitonic tuning in 2D materials. Advanced metasurface optimization techniques including machine learning will also be crucial for exploring the large design space.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"19 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0734","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Augmented and virtual reality (AR/VR) is transforming how humans interact with technology in a wide range of fields and industries, from healthcare and education to entertainment. However, current device limitations have impeded wider integration. Tunable holographic metasurfaces represent a promising platform for revolutionizing AR/VR devices by precisely controlling light at the subwavelength scale. This article examines current challenges and opportunities from both the AR/VR and holographic metamaterial perspectives and explores how improvements to state-of-the-art approaches can address these challenges. In particular, we propose a focus on easily manufacturable and broadly electrically tunable metasurface technologies including liquid crystal integration and excitonic tuning in 2D materials. Advanced metasurface optimization techniques including machine learning will also be crucial for exploring the large design space.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.