Alberto Muñoz de las Heras, Diego Porras, Alejandro González-Tudela
{"title":"Improving quantum metrology protocols with programmable photonic circuits","authors":"Alberto Muñoz de las Heras, Diego Porras, Alejandro González-Tudela","doi":"10.1515/nanoph-2024-0640","DOIUrl":null,"url":null,"abstract":"Photonic quantum metrology enables the measurement of physical parameters with precision surpassing classical limits by using quantum states of light. However, generating states providing a large metrological advantage is hard because standard probabilistic methods suffer from low generation rates. Deterministic protocols using non-linear interactions offer a path to overcome this problem, but they are currently limited by the errors introduced during the interaction time. Thus, finding strategies to minimize the interaction time of these non-linearities is still a relevant question. In this work, we introduce and compare different deterministic strategies based on continuous and programmable Jaynes–Cummings and Kerr-type interactions, aiming to maximize the metrological advantage while minimizing the interaction time. We find that programmable interactions provide a larger metrological advantage than continuous operations at the expense of slightly larger interaction times. We show that while for Jaynes–Cummings non-linearities the interaction time grows with the photon number, for Kerr-type ones it decreases, favoring the scalability to big photon numbers. Finally, we also optimize different measurement strategies for the deterministically generated states based on photon-counting and homodyne detection.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"205 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0640","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photonic quantum metrology enables the measurement of physical parameters with precision surpassing classical limits by using quantum states of light. However, generating states providing a large metrological advantage is hard because standard probabilistic methods suffer from low generation rates. Deterministic protocols using non-linear interactions offer a path to overcome this problem, but they are currently limited by the errors introduced during the interaction time. Thus, finding strategies to minimize the interaction time of these non-linearities is still a relevant question. In this work, we introduce and compare different deterministic strategies based on continuous and programmable Jaynes–Cummings and Kerr-type interactions, aiming to maximize the metrological advantage while minimizing the interaction time. We find that programmable interactions provide a larger metrological advantage than continuous operations at the expense of slightly larger interaction times. We show that while for Jaynes–Cummings non-linearities the interaction time grows with the photon number, for Kerr-type ones it decreases, favoring the scalability to big photon numbers. Finally, we also optimize different measurement strategies for the deterministically generated states based on photon-counting and homodyne detection.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.