Luminescence thermometry based on photon emitters in nanophotonic silicon waveguides

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanophotonics Pub Date : 2025-02-18 DOI:10.1515/nanoph-2024-0678
Kilian Sandholzer, Stephan Rinner, Justus Edelmann, Andreas Reiserer
{"title":"Luminescence thermometry based on photon emitters in nanophotonic silicon waveguides","authors":"Kilian Sandholzer, Stephan Rinner, Justus Edelmann, Andreas Reiserer","doi":"10.1515/nanoph-2024-0678","DOIUrl":null,"url":null,"abstract":"The reliable measurement and accurate control of the temperature within nanophotonic devices is a key prerequisite for their application in both classical and quantum technologies. Established approaches use sensors that are attached in proximity to the components, which only offers a limited spatial resolution and thus impedes the measurement of local heating effects. Here, we, therefore, study an alternative temperature sensing technique that is based on measuring the luminescence of erbium emitters directly integrated into nanophotonic silicon waveguides. To cover the entire temperature range from 295 K to 2 K, we investigate two different approaches: The thermal activation of nonradiative decay channels for temperatures above 200 K and the thermal depopulation of spin and crystal field levels at lower temperatures. The achieved sensitivity is 0.22(4) %/K at room temperature and increases up to 420(50) %/K at approximately 2 K. Within a few-minute measurement interval, we thus achieve a measurement precision that ranges from 0.04(1) K at the lowest studied temperature to 6(1) K at ambient conditions. In the future, the measurement time can be further reduced by optimizing the excitation pulse sequence and the fiber-to-chip coupling efficiency. Combining this with spatially selective implantation promises precise thermometry from ambient to cryogenic temperatures with a spatial resolution down to a few nanometers.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"14 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0678","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The reliable measurement and accurate control of the temperature within nanophotonic devices is a key prerequisite for their application in both classical and quantum technologies. Established approaches use sensors that are attached in proximity to the components, which only offers a limited spatial resolution and thus impedes the measurement of local heating effects. Here, we, therefore, study an alternative temperature sensing technique that is based on measuring the luminescence of erbium emitters directly integrated into nanophotonic silicon waveguides. To cover the entire temperature range from 295 K to 2 K, we investigate two different approaches: The thermal activation of nonradiative decay channels for temperatures above 200 K and the thermal depopulation of spin and crystal field levels at lower temperatures. The achieved sensitivity is 0.22(4) %/K at room temperature and increases up to 420(50) %/K at approximately 2 K. Within a few-minute measurement interval, we thus achieve a measurement precision that ranges from 0.04(1) K at the lowest studied temperature to 6(1) K at ambient conditions. In the future, the measurement time can be further reduced by optimizing the excitation pulse sequence and the fiber-to-chip coupling efficiency. Combining this with spatially selective implantation promises precise thermometry from ambient to cryogenic temperatures with a spatial resolution down to a few nanometers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可靠测量和精确控制纳米光子器件内的温度是将其应用于经典和量子技术的关键先决条件。既有方法使用的传感器紧贴元件,只能提供有限的空间分辨率,因此妨碍了对局部加热效应的测量。因此,我们在此研究了另一种温度传感技术,该技术基于测量直接集成到纳米光子硅波导中的铒发射器的发光。为了覆盖从 295 K 到 2 K 的整个温度范围,我们研究了两种不同的方法:在 200 K 以上的温度下,对非辐射衰变通道进行热激活;在较低温度下,对自旋和晶体场水平进行热消除。在几分钟的测量间隔内,我们实现了从最低研究温度下的 0.04(1) K 到环境条件下的 6(1) K 的测量精度。未来,通过优化激发脉冲序列和光纤到芯片的耦合效率,测量时间还可以进一步缩短。结合空间选择性植入技术,有望实现从环境温度到低温温度的精确测温,空间分辨率可低至几纳米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
期刊最新文献
High-efficiency generation of bi-functional holography with metasurfaces Improving quantum metrology protocols with programmable photonic circuits Luminescence thermometry based on photon emitters in nanophotonic silicon waveguides Tunable holographic metasurfaces for augmented and virtual reality Enhanced photoluminescence of strongly coupled single molecule-plasmonic nanocavity: analysis of spectral modifications using nonlocal response theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1