Monolayer blue phosphorene's potential for nucleobase detection: a computational study

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Computational Electronics Pub Date : 2025-01-10 DOI:10.1007/s10825-024-02261-7
Fatemeh Safari, Mahdi Moradinasab, Seyed-Mohammad Tabatabaei
{"title":"Monolayer blue phosphorene's potential for nucleobase detection: a computational study","authors":"Fatemeh Safari,&nbsp;Mahdi Moradinasab,&nbsp;Seyed-Mohammad Tabatabaei","doi":"10.1007/s10825-024-02261-7","DOIUrl":null,"url":null,"abstract":"<div><p>Adsorption of four canonical, two methylated, and one mutated nucleobases have been studied on single-layer blue phosphorene (SL-BlueP), including van der Waals interactions within density functional theory. Our calculations for electronic charge transfer demonstrate that all the considered bases undergo physisorption on SL-BlueP with a charge transfer within the range of -0.004 to + 0.024 |<i>e</i>|. The work function of SL-BlueP decreases by 0.08, 0.10, and 0.19 upon adsorption of adenine, cytosine, and guanine, respectively, and its bandgap can be shrunk by as much as 36%. Interestingly, the current–voltage (I-V) curves show characteristic responses depending on the type of nucleobases. Furthermore, the adsorption of nucleobase molecules on SL-BlueP gives rise to distinct energy loss spectra. The obtained distinguishable features may be used for ultraselective detection of DNA nucleobases.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02261-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Adsorption of four canonical, two methylated, and one mutated nucleobases have been studied on single-layer blue phosphorene (SL-BlueP), including van der Waals interactions within density functional theory. Our calculations for electronic charge transfer demonstrate that all the considered bases undergo physisorption on SL-BlueP with a charge transfer within the range of -0.004 to + 0.024 |e|. The work function of SL-BlueP decreases by 0.08, 0.10, and 0.19 upon adsorption of adenine, cytosine, and guanine, respectively, and its bandgap can be shrunk by as much as 36%. Interestingly, the current–voltage (I-V) curves show characteristic responses depending on the type of nucleobases. Furthermore, the adsorption of nucleobase molecules on SL-BlueP gives rise to distinct energy loss spectra. The obtained distinguishable features may be used for ultraselective detection of DNA nucleobases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单层蓝磷烯核碱基检测的潜力:计算研究
研究了4个典型、2个甲基化和1个突变核碱基在单层蓝磷烯(SL-BlueP)上的吸附,包括密度泛函理论中的范德华相互作用。我们对电子电荷转移的计算表明,所有考虑的碱都在SL-BlueP上发生物理吸附,电荷转移范围在-0.004到+ 0.024 |之间。吸附腺嘌呤、胞嘧啶和鸟嘌呤后,SL-BlueP的功函数分别降低0.08、0.10和0.19,能带隙可缩小36%。有趣的是,电流-电压(I-V)曲线显示了依赖于核碱基类型的特征响应。此外,核碱基分子在SL-BlueP上的吸附产生了明显的能量损失谱。所获得的可区分特征可用于DNA核碱基的超选择性检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
期刊最新文献
Heterojunction active layer MAPbI3/CsPbI3 design for high-performance perovskite solar cells: a computational analysis achieving 20.5% efficiency Material-driven optimization of CdTe/gold interfaces to boost NIR performance in nanostructured solar cells Computer simulations of a four-element array antenna using polyethylene (PE) substrate and parameter analysis for compact, flexible wireless applications Improving the efficiency and performance of Rb2SnI6-based perovskite solar cells through comprehensive optimization: a numerical study TiO2 and PbTiO3 assisted SPR biosensor for detection of malignancy in human-liver tissue with high sensitivity and figure of merit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1