{"title":"Systematic softening in universal machine learning interatomic potentials","authors":"Bowen Deng, Yunyeong Choi, Peichen Zhong, Janosh Riebesell, Shashwat Anand, Zhuohan Li, KyuJung Jun, Kristin A. Persson, Gerbrand Ceder","doi":"10.1038/s41524-024-01500-6","DOIUrl":null,"url":null,"abstract":"<p>Machine learning interatomic potentials (MLIPs) have introduced a new paradigm for atomic simulations. Recent advancements have led to universal MLIPs (uMLIPs) that are pre-trained on diverse datasets, providing opportunities for universal force fields and foundational machine learning models. However, their performance in extrapolating to out-of-distribution complex atomic environments remains unclear. In this study, we highlight a consistent potential energy surface (PES) softening effect in three uMLIPs: M3GNet, CHGNet, and MACE-MP-0, which is characterized by energy and force underprediction in atomic-modeling benchmarks including surfaces, defects, solid-solution energetics, ion migration barriers, phonon vibration modes, and general high-energy states. The PES softening behavior originates primarily from the systematically underpredicted PES curvature, which derives from the biased sampling of near-equilibrium atomic arrangements in uMLIP pre-training datasets. Our findings suggest that a considerable fraction of uMLIP errors are highly systematic, and can therefore be efficiently corrected. We argue for the importance of a comprehensive materials dataset with improved PES sampling for next-generation foundational MLIPs.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"36 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01500-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning interatomic potentials (MLIPs) have introduced a new paradigm for atomic simulations. Recent advancements have led to universal MLIPs (uMLIPs) that are pre-trained on diverse datasets, providing opportunities for universal force fields and foundational machine learning models. However, their performance in extrapolating to out-of-distribution complex atomic environments remains unclear. In this study, we highlight a consistent potential energy surface (PES) softening effect in three uMLIPs: M3GNet, CHGNet, and MACE-MP-0, which is characterized by energy and force underprediction in atomic-modeling benchmarks including surfaces, defects, solid-solution energetics, ion migration barriers, phonon vibration modes, and general high-energy states. The PES softening behavior originates primarily from the systematically underpredicted PES curvature, which derives from the biased sampling of near-equilibrium atomic arrangements in uMLIP pre-training datasets. Our findings suggest that a considerable fraction of uMLIP errors are highly systematic, and can therefore be efficiently corrected. We argue for the importance of a comprehensive materials dataset with improved PES sampling for next-generation foundational MLIPs.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.