{"title":"Discovering novel lead-free solder alloy by multi-objective Bayesian active learning with experimental uncertainty","authors":"Qinghua Wei, Yuanhao Wang, Guo Yang, Tianyuan Li, Shuting Yu, Ziqiang Dong, Tong-Yi Zhang","doi":"10.1038/s41524-024-01480-7","DOIUrl":null,"url":null,"abstract":"<p>We present a multi-objective Bayesian active learning strategy, which greatly accelerates the discovery of super high-strength and high-ductility lead-free solder alloys. The active learning strategy demonstrates that a machine learning model will have high generalizability if experimental data uncertainty is included, which greatly improves the model prediction or the material design accuracy. The feature-point-start forward method in multi-objective optimization adopts two Gaussian process regression (GPR) models, one for strength and one for elongation, and their outputs build up the acquisition-function-modified objective space of strength and elongation. Then, Bayesian sampling is applied to design the next experiments by balancing exploitation and exploration. Seven multi-objective active learning iterations discovered two novel super high-strength and high-ductility lead-free solder alloys. After that, various material characterizations were conducted on the two novel solder alloys, and the results exhibited their high performances in melting properties, wettability, electrical conductivity, and shear strength of the solder joint and explored the mechanism of high strength and high ductility of the alloys. The present work systematically analyzes the important role of experimental uncertainty in machine learning, especially in the global optimization for material design, which demands high generalizability of predictions.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"29 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01480-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present a multi-objective Bayesian active learning strategy, which greatly accelerates the discovery of super high-strength and high-ductility lead-free solder alloys. The active learning strategy demonstrates that a machine learning model will have high generalizability if experimental data uncertainty is included, which greatly improves the model prediction or the material design accuracy. The feature-point-start forward method in multi-objective optimization adopts two Gaussian process regression (GPR) models, one for strength and one for elongation, and their outputs build up the acquisition-function-modified objective space of strength and elongation. Then, Bayesian sampling is applied to design the next experiments by balancing exploitation and exploration. Seven multi-objective active learning iterations discovered two novel super high-strength and high-ductility lead-free solder alloys. After that, various material characterizations were conducted on the two novel solder alloys, and the results exhibited their high performances in melting properties, wettability, electrical conductivity, and shear strength of the solder joint and explored the mechanism of high strength and high ductility of the alloys. The present work systematically analyzes the important role of experimental uncertainty in machine learning, especially in the global optimization for material design, which demands high generalizability of predictions.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.