J. J. Esteve-Paredes, M. A. García-Blázquez, A. J. Uría-Álvarez, M. Camarasa-Gómez, J. J. Palacios
{"title":"Excitons in nonlinear optical responses: shift current in MoS2 and GeS monolayers","authors":"J. J. Esteve-Paredes, M. A. García-Blázquez, A. J. Uría-Álvarez, M. Camarasa-Gómez, J. J. Palacios","doi":"10.1038/s41524-024-01504-2","DOIUrl":null,"url":null,"abstract":"<p>It is well-known that exciton effects are determinant to understanding the optical absorption spectrum of low-dimensional materials. However, the role of excitons in nonlinear optical responses has been much less investigated at the experimental level. Additionally, computational methods to calculate nonlinear conductivities in real materials are still not widespread, particularly taking into account excitonic interactions. We present a methodology to calculate the excitonic second-order optical responses in 2D materials relying on: (i) ab initio tight-binding Hamiltonians obtained by Wannier interpolation and (ii) solving the Bethe-Salpeter equation with effective electron-hole interactions. Here, in particular, we explore the role of excitons in the shift current of monolayer materials. Focusing on MoS<sub>2</sub> and GeS monolayer systems, our results show that 2<i>p</i>-like excitons, which are dark in the linear response regime, yield a contribution to the photocurrent comparable to that of 1<i>s</i>-like excitons. Under radiation with intensity ~10<sup>4</sup>W/cm<sup>2</sup>, the excitonic theory predicts in-gap photogalvanic currents of almost ~10 nA in sufficiently clean samples, which is typically one order of magnitude higher than the value predicted by independent-particle theory near the band edge.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"11 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01504-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
It is well-known that exciton effects are determinant to understanding the optical absorption spectrum of low-dimensional materials. However, the role of excitons in nonlinear optical responses has been much less investigated at the experimental level. Additionally, computational methods to calculate nonlinear conductivities in real materials are still not widespread, particularly taking into account excitonic interactions. We present a methodology to calculate the excitonic second-order optical responses in 2D materials relying on: (i) ab initio tight-binding Hamiltonians obtained by Wannier interpolation and (ii) solving the Bethe-Salpeter equation with effective electron-hole interactions. Here, in particular, we explore the role of excitons in the shift current of monolayer materials. Focusing on MoS2 and GeS monolayer systems, our results show that 2p-like excitons, which are dark in the linear response regime, yield a contribution to the photocurrent comparable to that of 1s-like excitons. Under radiation with intensity ~104W/cm2, the excitonic theory predicts in-gap photogalvanic currents of almost ~10 nA in sufficiently clean samples, which is typically one order of magnitude higher than the value predicted by independent-particle theory near the band edge.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.