Christophe Bonneville, Nathan Bieberdorf, Arun Hegde, Mark Asta, Habib N. Najm, Laurent Capolungo, Cosmin Safta
{"title":"Accelerating phase field simulations through a hybrid adaptive Fourier neural operator with U-net backbone","authors":"Christophe Bonneville, Nathan Bieberdorf, Arun Hegde, Mark Asta, Habib N. Najm, Laurent Capolungo, Cosmin Safta","doi":"10.1038/s41524-024-01488-z","DOIUrl":null,"url":null,"abstract":"<p>Prolonged contact between a corrosive liquid and metal alloys can cause progressive dealloying. For one such process as liquid-metal dealloying (LMD), phase field models have been developed to understand the mechanisms leading to complex morphologies. However, the LMD governing equations in these models often involve coupled non-linear partial differential equations (PDE), which are challenging to solve numerically. In particular, numerical stiffness in the PDEs requires an extremely refined time step size (on the order of 10<sup>−12</sup><i>s</i> or smaller). This computational bottleneck is especially problematic when running LMD simulation until a late time horizon is required. This motivates the development of surrogate models capable of leaping forward in time, by skipping several consecutive time steps at-once. In this paper, we propose a U-shaped adaptive Fourier neural operator (U-AFNO), a machine learning (ML) based model inspired by recent advances in neural operator learning. U-AFNO employs U-Nets for extracting and reconstructing local features within the physical fields, and passes the latent space through a vision transformer (ViT) implemented in the Fourier space (AFNO). We use U-AFNOs to learn the dynamics of mapping the field at a current time step into a later time step. We also identify global quantities of interest (QoI) describing the corrosion process (e.g., the deformation of the liquid-metal interface, lost metal, etc.) and show that our proposed U-AFNO model is able to accurately predict the field dynamics, in spite of the chaotic nature of LMD. Most notably, our model reproduces the key microstructure statistics and QoIs with a level of accuracy on par with the high-fidelity numerical solver, while achieving a significant 11, 200 × speed-up on a high-resolution grid when comparing the computational expense per time step. Finally, we also investigate the opportunity of using hybrid simulations, in which we alternate forward leaps in time using the U-AFNO with high-fidelity time stepping. We demonstrate that while advantageous for some surrogate model design choices, our proposed U-AFNO model in fully auto-regressive settings consistently outperforms hybrid schemes.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"29 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01488-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Prolonged contact between a corrosive liquid and metal alloys can cause progressive dealloying. For one such process as liquid-metal dealloying (LMD), phase field models have been developed to understand the mechanisms leading to complex morphologies. However, the LMD governing equations in these models often involve coupled non-linear partial differential equations (PDE), which are challenging to solve numerically. In particular, numerical stiffness in the PDEs requires an extremely refined time step size (on the order of 10−12s or smaller). This computational bottleneck is especially problematic when running LMD simulation until a late time horizon is required. This motivates the development of surrogate models capable of leaping forward in time, by skipping several consecutive time steps at-once. In this paper, we propose a U-shaped adaptive Fourier neural operator (U-AFNO), a machine learning (ML) based model inspired by recent advances in neural operator learning. U-AFNO employs U-Nets for extracting and reconstructing local features within the physical fields, and passes the latent space through a vision transformer (ViT) implemented in the Fourier space (AFNO). We use U-AFNOs to learn the dynamics of mapping the field at a current time step into a later time step. We also identify global quantities of interest (QoI) describing the corrosion process (e.g., the deformation of the liquid-metal interface, lost metal, etc.) and show that our proposed U-AFNO model is able to accurately predict the field dynamics, in spite of the chaotic nature of LMD. Most notably, our model reproduces the key microstructure statistics and QoIs with a level of accuracy on par with the high-fidelity numerical solver, while achieving a significant 11, 200 × speed-up on a high-resolution grid when comparing the computational expense per time step. Finally, we also investigate the opportunity of using hybrid simulations, in which we alternate forward leaps in time using the U-AFNO with high-fidelity time stepping. We demonstrate that while advantageous for some surrogate model design choices, our proposed U-AFNO model in fully auto-regressive settings consistently outperforms hybrid schemes.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.