Wenting Jiang, Fujia Yang, Dongna Cai, Jia Du, Manman Wu, Xixi Cai, Xu Chen, Shaoyun Wang
{"title":"Peptidomics & Molecular Simulation-Based Specific Screening of Antifreeze Peptides from Evynnis japonica Scale and the Action Mechanism","authors":"Wenting Jiang, Fujia Yang, Dongna Cai, Jia Du, Manman Wu, Xixi Cai, Xu Chen, Shaoyun Wang","doi":"10.1021/acs.jafc.4c09419","DOIUrl":null,"url":null,"abstract":"This study aims to explore the cryoprotective mechanisms of food-derived hydrolyzed peptides and develop novel cryoprotectants to enhance the quality of frozen foods. <i>Evynnis japonica</i> scale antifreeze peptides (Ej-AFP) were prepared using enzymatic hydrolysis, which had a 4-fold increase in protection efficiency for surimi compared to traditional cryoprotectants. Furthermore, Ej-AFP was able to control 63.60% of the ice crystals to sizes below 600 μm<sup>2</sup>. Three antifreeze peptide sequences were purified by using ice-affinity techniques and peptidomics. These sequences demonstrated a 21.75% enhancement in antifreeze activity and an increase of 1 °C in thermal hysteresis activity compared to Ej-AFP. Molecular simulation-elucidated ice-binding surface interacts with ice crystals through hydrogen bonds, while the nonice-binding surface disrupts the orderly arrangement of water molecules. This results in a tightly structured hydration layer around the peptide, increasing the curvature of the ice crystal surface and thereby demonstrating significant antifreeze activity in controlling ice crystal growth.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"27 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c09419","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to explore the cryoprotective mechanisms of food-derived hydrolyzed peptides and develop novel cryoprotectants to enhance the quality of frozen foods. Evynnis japonica scale antifreeze peptides (Ej-AFP) were prepared using enzymatic hydrolysis, which had a 4-fold increase in protection efficiency for surimi compared to traditional cryoprotectants. Furthermore, Ej-AFP was able to control 63.60% of the ice crystals to sizes below 600 μm2. Three antifreeze peptide sequences were purified by using ice-affinity techniques and peptidomics. These sequences demonstrated a 21.75% enhancement in antifreeze activity and an increase of 1 °C in thermal hysteresis activity compared to Ej-AFP. Molecular simulation-elucidated ice-binding surface interacts with ice crystals through hydrogen bonds, while the nonice-binding surface disrupts the orderly arrangement of water molecules. This results in a tightly structured hydration layer around the peptide, increasing the curvature of the ice crystal surface and thereby demonstrating significant antifreeze activity in controlling ice crystal growth.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.