High-risk habitat radiomics model based on ultrasound images for predicting lateral neck lymph node metastasis in differentiated thyroid cancer.

IF 2.9 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING BMC Medical Imaging Pub Date : 2025-01-13 DOI:10.1186/s12880-025-01551-1
Han Liu, Chun-Jie Hou, Min Wei, Ke-Feng Lu, Ying Liu, Pei Du, Li-Tao Sun, Jing-Lan Tang
{"title":"High-risk habitat radiomics model based on ultrasound images for predicting lateral neck lymph node metastasis in differentiated thyroid cancer.","authors":"Han Liu, Chun-Jie Hou, Min Wei, Ke-Feng Lu, Ying Liu, Pei Du, Li-Tao Sun, Jing-Lan Tang","doi":"10.1186/s12880-025-01551-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aims to evaluate the predictive usefulness of a habitat radiomics model based on ultrasound images for anticipating lateral neck lymph node metastasis (LLNM) in differentiated thyroid cancer (DTC), and for pinpointing high-risk habitat regions and significant radiomics traits.</p><p><strong>Methods: </strong>A group of 214 patients diagnosed with differentiated thyroid carcinoma (DTC) between August 2021 and August 2023 were included, consisting of 107 patients with confirmed postoperative lateral lymph node metastasis (LLNM) and 107 patients without metastasis or lateral cervical lymph node involvement. An additional cohort of 43 patients was recruited to serve as an independent external testing group for this study. Patients were randomly divided into training and internal testing group at an 8:2 ratio. Region of interest (ROI) was manually outlined, and habitat analysis subregions were defined using the K-means method. The ideal number of subregions (n = 5) was determined using the Calinski-Harabasz score, leading to the creation of a habitat radiomics model with 5 subregions and the identification of the high-risk habitat model. Area under the curve (AUC) values were calculated for all models to assess their validity, and predictive model nomograms were created by integrating clinical features. The internal and external testing dataset is employed to assess the predictive performance and stability of the model.</p><p><strong>Results: </strong>In internal testing group, Habitat 3 was identified as the high-risk habitat model in the study, showing the best diagnostic efficacy among all models (AUC(CRM) vs. AUC(Habitat 3) vs. AUC(CRM + Habitat 3) = 0.84(95%CI:0.71-0.97) vs. 0.90(95%CI:0.80-1.00) vs. 0.79(95%CI:0.65-0.93)). Moreover, integrating the Habitat 3 model with clinical features and constructing nomograms enhanced the predictive capability of the combined model (AUC = 0.95(95%CI:0.88-1.00)). In this study, an independent external testing cohort was utilized to assess the model's accuracy, yielding an AUC of 0.88 (95%CI: 0.78-0.98).</p><p><strong>Conclusion: </strong>The integration of the High-Risk Habitats (Habitat 3) radiomics model with clinical characteristics demonstrated a high predictive accuracy in identifying LLNM. This model has the potential to offer valuable guidance to surgeons in deciding the necessity of LLNM dissection for DTC.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"16"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-025-01551-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: This study aims to evaluate the predictive usefulness of a habitat radiomics model based on ultrasound images for anticipating lateral neck lymph node metastasis (LLNM) in differentiated thyroid cancer (DTC), and for pinpointing high-risk habitat regions and significant radiomics traits.

Methods: A group of 214 patients diagnosed with differentiated thyroid carcinoma (DTC) between August 2021 and August 2023 were included, consisting of 107 patients with confirmed postoperative lateral lymph node metastasis (LLNM) and 107 patients without metastasis or lateral cervical lymph node involvement. An additional cohort of 43 patients was recruited to serve as an independent external testing group for this study. Patients were randomly divided into training and internal testing group at an 8:2 ratio. Region of interest (ROI) was manually outlined, and habitat analysis subregions were defined using the K-means method. The ideal number of subregions (n = 5) was determined using the Calinski-Harabasz score, leading to the creation of a habitat radiomics model with 5 subregions and the identification of the high-risk habitat model. Area under the curve (AUC) values were calculated for all models to assess their validity, and predictive model nomograms were created by integrating clinical features. The internal and external testing dataset is employed to assess the predictive performance and stability of the model.

Results: In internal testing group, Habitat 3 was identified as the high-risk habitat model in the study, showing the best diagnostic efficacy among all models (AUC(CRM) vs. AUC(Habitat 3) vs. AUC(CRM + Habitat 3) = 0.84(95%CI:0.71-0.97) vs. 0.90(95%CI:0.80-1.00) vs. 0.79(95%CI:0.65-0.93)). Moreover, integrating the Habitat 3 model with clinical features and constructing nomograms enhanced the predictive capability of the combined model (AUC = 0.95(95%CI:0.88-1.00)). In this study, an independent external testing cohort was utilized to assess the model's accuracy, yielding an AUC of 0.88 (95%CI: 0.78-0.98).

Conclusion: The integration of the High-Risk Habitats (Habitat 3) radiomics model with clinical characteristics demonstrated a high predictive accuracy in identifying LLNM. This model has the potential to offer valuable guidance to surgeons in deciding the necessity of LLNM dissection for DTC.

Clinical trial number: Not applicable.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
期刊最新文献
High-risk habitat radiomics model based on ultrasound images for predicting lateral neck lymph node metastasis in differentiated thyroid cancer. Investigating resting-state functional connectivity changes within procedural memory network across neuropsychiatric disorders using fMRI. Optimizing hip MRI: enhancing image quality and elevating inter-observer consistency using deep learning-powered reconstruction. Comparison of diagnostic performance for pulmonary nodule detection between free-breathing spiral ultrashort echo time and free-breathing radial volumetric interpolated breath-hold examination. Knowledge discovery from database: MRI radiomic features to assess recurrence risk in high-grade meningiomas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1