{"title":"6D Pose Estimation of Industrial Parts Based on Point Cloud Geometric Information Prediction for Robotic Grasping.","authors":"Qinglei Zhang, Cuige Xue, Jiyun Qin, Jianguo Duan, Ying Zhou","doi":"10.3390/e26121022","DOIUrl":null,"url":null,"abstract":"<p><p>In industrial robotic arm gripping operations within disordered environments, the loss of physical information on the object's surface is often caused by changes such as varying lighting conditions, weak surface textures, and sensor noise. This leads to inaccurate object detection and pose estimation information. A method for industrial object pose estimation using point cloud data is proposed to improve pose estimation accuracy. During the feature extraction process, both global and local information are captured by integrating the appearance features of RGB images with the geometric features of point clouds. Integrating semantic information with instance features effectively distinguishes instances of similar objects. The fusion of depth information and RGB color channels enriches spatial context and structure. A cross-entropy loss function is employed for multi-class target classification, and a discriminative loss function enables instance segmentation. A novel point cloud registration method is also introduced to address re-projection errors when mapping 3D keypoints to 2D planes. This method utilizes 3D geometric information, extracting edge features using point cloud curvature and normal vectors, and registers them with models to obtain accurate pose information. Experimental results demonstrate that the proposed method is effective and superior on the LineMod and YCB-Video datasets. Finally, objects are grasped by deploying a robotic arm on the grasping platform.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727297/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121022","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In industrial robotic arm gripping operations within disordered environments, the loss of physical information on the object's surface is often caused by changes such as varying lighting conditions, weak surface textures, and sensor noise. This leads to inaccurate object detection and pose estimation information. A method for industrial object pose estimation using point cloud data is proposed to improve pose estimation accuracy. During the feature extraction process, both global and local information are captured by integrating the appearance features of RGB images with the geometric features of point clouds. Integrating semantic information with instance features effectively distinguishes instances of similar objects. The fusion of depth information and RGB color channels enriches spatial context and structure. A cross-entropy loss function is employed for multi-class target classification, and a discriminative loss function enables instance segmentation. A novel point cloud registration method is also introduced to address re-projection errors when mapping 3D keypoints to 2D planes. This method utilizes 3D geometric information, extracting edge features using point cloud curvature and normal vectors, and registers them with models to obtain accurate pose information. Experimental results demonstrate that the proposed method is effective and superior on the LineMod and YCB-Video datasets. Finally, objects are grasped by deploying a robotic arm on the grasping platform.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.