Julia Slawinska, Grzegorz Muziol, Anna Kafar, Czeslaw Skierbiszewski
{"title":"Lateral Carrier Diffusion in Ion-Implanted Ultra-Small Blue III-Nitride MicroLEDs","authors":"Julia Slawinska, Grzegorz Muziol, Anna Kafar, Czeslaw Skierbiszewski","doi":"10.1021/acsami.4c14784","DOIUrl":null,"url":null,"abstract":"Ultrasmall micro-light-emitting diodes (μLEDs), sized below 10 μm, are indispensable to create the next-generation augmented and virtual reality (AR/VR) devices. Their high brightness and low power consumption could not only enhance the user experience by providing vivid and lifelike visuals but also extend device longevity. However, a notable challenge emerges: a decrease in efficiency with a reduced size. This study casts light on this critical issue by investigating the lateral carrier diffusion in ion-implanted μLEDs. The implanted area restricts the carrier injection and defines the μLED size to diameters of 10, 5, and 2 μm without introduction of nonradiative recombination centers in the quantum well area. We observed a drop of efficiency for smaller devices, similar to the case of conventional μLEDs with etched sidewalls. Electroluminescence of μLEDs was studied using a Gaussian beam telescope to analyze light intensity profiles and hence the spatial carrier distribution within the active region of μLEDs. Lateral diffusion length was determined to be 11.2 μm at <i>j</i> = 1 A/cm<sup>2</sup> and decreased down to 2.4 μm for <i>j</i> = 1000 A/cm<sup>2</sup>. We explain the underlying mechanism behind the size-dependent efficiency observed in μLEDs, attributed to lateral carrier diffusion.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"74 6 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c14784","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasmall micro-light-emitting diodes (μLEDs), sized below 10 μm, are indispensable to create the next-generation augmented and virtual reality (AR/VR) devices. Their high brightness and low power consumption could not only enhance the user experience by providing vivid and lifelike visuals but also extend device longevity. However, a notable challenge emerges: a decrease in efficiency with a reduced size. This study casts light on this critical issue by investigating the lateral carrier diffusion in ion-implanted μLEDs. The implanted area restricts the carrier injection and defines the μLED size to diameters of 10, 5, and 2 μm without introduction of nonradiative recombination centers in the quantum well area. We observed a drop of efficiency for smaller devices, similar to the case of conventional μLEDs with etched sidewalls. Electroluminescence of μLEDs was studied using a Gaussian beam telescope to analyze light intensity profiles and hence the spatial carrier distribution within the active region of μLEDs. Lateral diffusion length was determined to be 11.2 μm at j = 1 A/cm2 and decreased down to 2.4 μm for j = 1000 A/cm2. We explain the underlying mechanism behind the size-dependent efficiency observed in μLEDs, attributed to lateral carrier diffusion.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.