Angus Hawkey, Xabier Rodríguez-Martínez, Sebastian Lindenthal, Moritz C. F. Jansen, Reverant Crispin, Jana Zaumseil
{"title":"Bandgap-Dependent Doping of Semiconducting Carbon Nanotube Networks by Proton-Coupled Electron Transfer for Stable Thermoelectrics","authors":"Angus Hawkey, Xabier Rodríguez-Martínez, Sebastian Lindenthal, Moritz C. F. Jansen, Reverant Crispin, Jana Zaumseil","doi":"10.1002/aelm.202400817","DOIUrl":null,"url":null,"abstract":"Networks of semiconducting single-walled carbon nanotubes (SWNTs) are a promising material for thermoelectric energy harvesting due to their mechanical flexibility, solution processability, high Seebeck coefficients and high electrical conductivities after chemical p- or n-doping. Here, we demonstrate that proton-coupled electron transfer (PCET) with benzoquinone (BQ) as the oxidant and lithium bis(trifluoromethylsulfonyl)imide (Li[TFSI]) for electrolyte counterions is a highly suitable method for p-doping of polymer-sorted semiconducting SWNT networks. The achieved doping levels, as determined from absorption bleaching, depend directly on both the pH of the aqueous doping solutions and the bandgap (i.e., diameter) of the nanotubes within the network. Fast screening of different nanotube networks under various doping conditions is enabled by a high-throughput setup for thermoelectric measurements of five samples in parallel. For small-bandgap SWNTs, PCET-doping is sufficient to reach the maximum thermoelectric power factors, which are equal to those obtained by conventional methods. In contrast to other doping methods, the electrical conductivity of PCET-doped SWNTs remains stable over at least 5 days in air. These results confirm PCET to be a suitable approach for more environmentally friendly and stable doping of semiconducting SWNTs as promising thermoelectric materials.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"31 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400817","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Networks of semiconducting single-walled carbon nanotubes (SWNTs) are a promising material for thermoelectric energy harvesting due to their mechanical flexibility, solution processability, high Seebeck coefficients and high electrical conductivities after chemical p- or n-doping. Here, we demonstrate that proton-coupled electron transfer (PCET) with benzoquinone (BQ) as the oxidant and lithium bis(trifluoromethylsulfonyl)imide (Li[TFSI]) for electrolyte counterions is a highly suitable method for p-doping of polymer-sorted semiconducting SWNT networks. The achieved doping levels, as determined from absorption bleaching, depend directly on both the pH of the aqueous doping solutions and the bandgap (i.e., diameter) of the nanotubes within the network. Fast screening of different nanotube networks under various doping conditions is enabled by a high-throughput setup for thermoelectric measurements of five samples in parallel. For small-bandgap SWNTs, PCET-doping is sufficient to reach the maximum thermoelectric power factors, which are equal to those obtained by conventional methods. In contrast to other doping methods, the electrical conductivity of PCET-doped SWNTs remains stable over at least 5 days in air. These results confirm PCET to be a suitable approach for more environmentally friendly and stable doping of semiconducting SWNTs as promising thermoelectric materials.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.