Wanli Zhang, Xinpeng Mou, Yunpeng Ma, Yi Zheng, Sixu Wang, Liang Shu, Ziwan Du, Chenguang Deng, Qiong Yang, Rong Yu, Jing-Feng Li, Qian Li
{"title":"Phase Coexistence Induced Giant Dielectric Tunability and Electromechanical Response in PbZrO3 Epitaxial Thin Films","authors":"Wanli Zhang, Xinpeng Mou, Yunpeng Ma, Yi Zheng, Sixu Wang, Liang Shu, Ziwan Du, Chenguang Deng, Qiong Yang, Rong Yu, Jing-Feng Li, Qian Li","doi":"10.1002/smll.202410260","DOIUrl":null,"url":null,"abstract":"PbZrO<sub>3</sub> (PZO) thin films, as a classic antiferroelectric material, have attracted tremendous attention for their excellent dielectric, electromechanical, and thermal switching performances. However, several fundamental questions remain unresolved, particularly the existence of an intermediate phase during the transition from the antiferroelectric (AFE) to ferroelectric (FE) state. Here, a phase coexistence configuration of an orthorhombic AFE phase and a tetragonal-like (T-like) phase is reported in epitaxial antiferroelectric PZO thin films, with thickness ranging from 16 to 110 nm. This configuration is evidenced both macroscopically by distinct shoulder-cape-shaped dielectric behavior and microscopically through scanning transmission electron microscopy (STEM) analysis. Remarkably, a 49 nm PZO film achieves an ultrahigh dielectric tunability of 90.1%, while a 59 nm film exhibits significant electromechanical strain of 0.66%. Microscopically, HAADF-STEM reveals the presence of the intermediate phase with a dipole arrangement of vertically diagonal up-up-down-down pattern, and first-principles calculations further confirm the role of this intermediate phase during AFE-to-FE phase transition, which is responsible for the unusual dielectric peaks of <i>ɛ</i><sub>r</sub>-<i>E</i> curves. These findings not only enhance the understanding of phase transition in antiferroelectric materials but also exhibit great potential for high-performance tunable and nano-electromechanical device applications.","PeriodicalId":228,"journal":{"name":"Small","volume":"69 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202410260","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
PbZrO3 (PZO) thin films, as a classic antiferroelectric material, have attracted tremendous attention for their excellent dielectric, electromechanical, and thermal switching performances. However, several fundamental questions remain unresolved, particularly the existence of an intermediate phase during the transition from the antiferroelectric (AFE) to ferroelectric (FE) state. Here, a phase coexistence configuration of an orthorhombic AFE phase and a tetragonal-like (T-like) phase is reported in epitaxial antiferroelectric PZO thin films, with thickness ranging from 16 to 110 nm. This configuration is evidenced both macroscopically by distinct shoulder-cape-shaped dielectric behavior and microscopically through scanning transmission electron microscopy (STEM) analysis. Remarkably, a 49 nm PZO film achieves an ultrahigh dielectric tunability of 90.1%, while a 59 nm film exhibits significant electromechanical strain of 0.66%. Microscopically, HAADF-STEM reveals the presence of the intermediate phase with a dipole arrangement of vertically diagonal up-up-down-down pattern, and first-principles calculations further confirm the role of this intermediate phase during AFE-to-FE phase transition, which is responsible for the unusual dielectric peaks of ɛr-E curves. These findings not only enhance the understanding of phase transition in antiferroelectric materials but also exhibit great potential for high-performance tunable and nano-electromechanical device applications.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.