{"title":"The Future of MXenes: Exploring Oxidative Degradation Pathways and Coping with Surface/Edge Passivation Approach","authors":"Zubair Khalid, Farhan Hadi, Jing Xie, Vidya Chandrabose, Jae-Min Oh","doi":"10.1002/smll.202407856","DOIUrl":null,"url":null,"abstract":"The MXene, which is usually transition metal carbide, nitride, and carbonitride, is one of the emerging family of 2D materials, exhibiting considerable potential across various research areas. Despite theoretical versatility, practical application of MXene is prohibited due to its spontaneous oxidative degradation. This review meticulously discusses the factors influencing the oxidation of MXenes, considering both thermodynamic and kinetic point of view. The potential mechanisms of oxidation are systematically introduced, based on experimental and theoretical models. Typically, the surfaces and edges of MXenes are susceptible to oxidation, as the surface terminal groups are easily attacked by oxygen and water molecules, ultimately leading to structural deformation. To retard oxidative degradation, ligand mediated surface/edge passivation is suggested as a promising strategy. In this regard, detailed passivation strategies for MXenes are systematically explained based on the types of chemistry at the MXene-ligand interface—covalent bonding, electrostatic interactions, and hydrogen bonding—and the type of stabilizing moieties—organic, inorganic, biomolecules, and polymers. The retardation of oxidation is discussed in relation with the interaction type and passivating moiety. This review aims to catalyze future research to identify efficient and cost-effective ligands for the surface engineering of MXenes, enhancing their oxidation stability.","PeriodicalId":228,"journal":{"name":"Small","volume":"44 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407856","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The MXene, which is usually transition metal carbide, nitride, and carbonitride, is one of the emerging family of 2D materials, exhibiting considerable potential across various research areas. Despite theoretical versatility, practical application of MXene is prohibited due to its spontaneous oxidative degradation. This review meticulously discusses the factors influencing the oxidation of MXenes, considering both thermodynamic and kinetic point of view. The potential mechanisms of oxidation are systematically introduced, based on experimental and theoretical models. Typically, the surfaces and edges of MXenes are susceptible to oxidation, as the surface terminal groups are easily attacked by oxygen and water molecules, ultimately leading to structural deformation. To retard oxidative degradation, ligand mediated surface/edge passivation is suggested as a promising strategy. In this regard, detailed passivation strategies for MXenes are systematically explained based on the types of chemistry at the MXene-ligand interface—covalent bonding, electrostatic interactions, and hydrogen bonding—and the type of stabilizing moieties—organic, inorganic, biomolecules, and polymers. The retardation of oxidation is discussed in relation with the interaction type and passivating moiety. This review aims to catalyze future research to identify efficient and cost-effective ligands for the surface engineering of MXenes, enhancing their oxidation stability.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.