Beyond Tradition: A MOF-On-MOF Cascade Z-Scheme Heterostructure for Augmented CO2 Photoreduction

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2025-01-17 DOI:10.1002/smll.202409759
Ruipeng Jin, Rui Li, Ming-Li Ma, Da-Yu Chen, Jian-Yu Zhang, Zheng-He Xie, Li-Feng Ding, Yabo Xie, Jian-Rong Li
{"title":"Beyond Tradition: A MOF-On-MOF Cascade Z-Scheme Heterostructure for Augmented CO2 Photoreduction","authors":"Ruipeng Jin, Rui Li, Ming-Li Ma, Da-Yu Chen, Jian-Yu Zhang, Zheng-He Xie, Li-Feng Ding, Yabo Xie, Jian-Rong Li","doi":"10.1002/smll.202409759","DOIUrl":null,"url":null,"abstract":"Metal–organic frameworks (MOFs) are rigorously investigated as promising candidates for CO<sub>2</sub> capture and conversion. MOF-on-MOF heterostructures integrate bolstered charger carrier separation with the intrinsic advantages of MOF components, exhibiting immense potential to substantially escalate the efficiency of photocatalytic CO<sub>2</sub> reduction (CO<sub>2</sub>RR). However, the structural and compositional complexity poses significant challenges to the controllable development of these heterostructures. Herein, a conventional MOF-on-MOF nanocomposite is readily optimized from a type II heterojunction to a state-of-the-art cascade Z-scheme configuration via the encapsulation of Pt nanoparticles (Pt NPs), establishing synergistic MOF-MOF and metal-MOF heterojunctions with reinforced built-in electric field. A cascade electron flow is thus propelled, vigorously separating the photogenerated charge carriers and profoundly extending their lifetimes. Collectively, the photocatalytic activity of the cascade Z-scheme is drastically promoted, exhibiting a nearly quintuple enhancement in the CO production rate over the original type II heterostructure. Moreover, the anti-sintering capacity of the developed nanocomposite is unveiled, elucidating its simultaneously improved activity and stability. These findings present unprecedented regulation over the configuration of a MOF-on-MOF heterojunction, substantially enriching the fundamental understanding and rational design strategies of composite materials.","PeriodicalId":228,"journal":{"name":"Small","volume":"55 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202409759","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal–organic frameworks (MOFs) are rigorously investigated as promising candidates for CO2 capture and conversion. MOF-on-MOF heterostructures integrate bolstered charger carrier separation with the intrinsic advantages of MOF components, exhibiting immense potential to substantially escalate the efficiency of photocatalytic CO2 reduction (CO2RR). However, the structural and compositional complexity poses significant challenges to the controllable development of these heterostructures. Herein, a conventional MOF-on-MOF nanocomposite is readily optimized from a type II heterojunction to a state-of-the-art cascade Z-scheme configuration via the encapsulation of Pt nanoparticles (Pt NPs), establishing synergistic MOF-MOF and metal-MOF heterojunctions with reinforced built-in electric field. A cascade electron flow is thus propelled, vigorously separating the photogenerated charge carriers and profoundly extending their lifetimes. Collectively, the photocatalytic activity of the cascade Z-scheme is drastically promoted, exhibiting a nearly quintuple enhancement in the CO production rate over the original type II heterostructure. Moreover, the anti-sintering capacity of the developed nanocomposite is unveiled, elucidating its simultaneously improved activity and stability. These findings present unprecedented regulation over the configuration of a MOF-on-MOF heterojunction, substantially enriching the fundamental understanding and rational design strategies of composite materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Phase Coexistence Induced Giant Dielectric Tunability and Electromechanical Response in PbZrO3 Epitaxial Thin Films Beyond Tradition: A MOF-On-MOF Cascade Z-Scheme Heterostructure for Augmented CO2 Photoreduction Harnessing Nanomaterials for Next-Generation DNA Methylation Biosensors The Future of MXenes: Exploring Oxidative Degradation Pathways and Coping with Surface/Edge Passivation Approach Efficient Photocatalytic Water Purification Through Novel Janus-Nanomicelles with Long-Lived Charge Separation Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1