Xiaohan Wang , Lin Zhang , Lihui Wang , Enrique Ruiz Zuñiga , Xi Vincent Wang , Erik Flores-García
{"title":"Dynamic multi-tour order picking in an automotive-part warehouse based on attention-aware deep reinforcement learning","authors":"Xiaohan Wang , Lin Zhang , Lihui Wang , Enrique Ruiz Zuñiga , Xi Vincent Wang , Erik Flores-García","doi":"10.1016/j.rcim.2025.102959","DOIUrl":null,"url":null,"abstract":"<div><div>Dynamic order picking has usually demonstrated significant impacts on production efficiency in warehouse management. In the context of an automotive-part warehouse, this paper addresses a dynamic multi-tour order-picking problem based on a novel attention-aware deep reinforcement learning-based (ADRL) method. The multi-tour represents that one order-picking task must be split into multiple tours due to the cart capacity and the operator’s workload constraints. First, the multi-tour order-picking problem is formulated as a mathematical model, and then reformulated as a Markov decision process. Second, a novel DRL-based method is proposed to solve it effectively. Compared to the existing DRL-based methods, this approach employs multi-head attention to perceive warehouse situations. Additionally, three improvements are proposed to further strengthen the solution quality and generalization, including (1) the extra location representation to align the batch length during training, (2) the dynamic decoding to integrate real-time information of the warehouse environment during inference, and (3) the proximal policy optimization with entropy bonus to facilitate action exploration during training. Finally, comparison experiments based on thousands of order-picking instances from the Swedish warehouse validated that the proposed ADRL could outperform the other twelve DRL-based methods at most by 40.6%, considering the optimization objective. Furthermore, the performance gap between ADRL and seven evolutionary algorithms is controlled within 3%, while ADRL can be hundreds or thousands of times faster than these EAs regarding the solving speed.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"94 ","pages":"Article 102959"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736584525000134","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic order picking has usually demonstrated significant impacts on production efficiency in warehouse management. In the context of an automotive-part warehouse, this paper addresses a dynamic multi-tour order-picking problem based on a novel attention-aware deep reinforcement learning-based (ADRL) method. The multi-tour represents that one order-picking task must be split into multiple tours due to the cart capacity and the operator’s workload constraints. First, the multi-tour order-picking problem is formulated as a mathematical model, and then reformulated as a Markov decision process. Second, a novel DRL-based method is proposed to solve it effectively. Compared to the existing DRL-based methods, this approach employs multi-head attention to perceive warehouse situations. Additionally, three improvements are proposed to further strengthen the solution quality and generalization, including (1) the extra location representation to align the batch length during training, (2) the dynamic decoding to integrate real-time information of the warehouse environment during inference, and (3) the proximal policy optimization with entropy bonus to facilitate action exploration during training. Finally, comparison experiments based on thousands of order-picking instances from the Swedish warehouse validated that the proposed ADRL could outperform the other twelve DRL-based methods at most by 40.6%, considering the optimization objective. Furthermore, the performance gap between ADRL and seven evolutionary algorithms is controlled within 3%, while ADRL can be hundreds or thousands of times faster than these EAs regarding the solving speed.
期刊介绍:
The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.