{"title":"Identification of the SP gene family and transcription factor SlSP5G promotes the high-temperature tolerance of tomatoes.","authors":"Wei Li, Shuchao Huang, Xiting Yang, Yandong Xie, Xin Meng, Zhiqi Xu, Zhaozhuang Li, Wenhao Zhou, Wei Zhang, Shuya Wang, Li Jin, Ning Jin, Jian Lyu, Jihua Yu","doi":"10.1016/j.ijbiomac.2025.140043","DOIUrl":null,"url":null,"abstract":"<p><p>Some members of the SELF PRUNING (SP) gene family have been shown to play critical roles in developmental processes and stress responses across a wide range of plant species. The study identifies 13 members that can be divided into three subfamilies based on evolutionary analysis. Cis-Acting element analysis of the promoter regions indicated the presence of numerous stress- and hormone-responsive elements in the SlSP family. Subcellular localization analysis showed that the SlSP family proteins are localized in the cell membrane, nucleus, and chloroplasts. Notably, the expression of SELF PRUNING 5G (SlSP5G) was significantly induced by high-temperature stress. Silencing SlSP5G reduced tolerance to high-temperature stress. Conversely, its overexpression in stable transgenic lines enhanced heat tolerance, as demonstrated by improved membrane stability, elevated antioxidant enzyme activity, and reduced reactive oxygen species (ROS) accumulation. In contrast, SlSP5G knockout lines were more susceptible to high-temperature stress. This study provides a comprehensive analysis of the SlSP gene family, offering novel insights into the mechanism of SlSP5G-mediated heat stress tolerance in tomato.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"298 ","pages":"140043"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.140043","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Some members of the SELF PRUNING (SP) gene family have been shown to play critical roles in developmental processes and stress responses across a wide range of plant species. The study identifies 13 members that can be divided into three subfamilies based on evolutionary analysis. Cis-Acting element analysis of the promoter regions indicated the presence of numerous stress- and hormone-responsive elements in the SlSP family. Subcellular localization analysis showed that the SlSP family proteins are localized in the cell membrane, nucleus, and chloroplasts. Notably, the expression of SELF PRUNING 5G (SlSP5G) was significantly induced by high-temperature stress. Silencing SlSP5G reduced tolerance to high-temperature stress. Conversely, its overexpression in stable transgenic lines enhanced heat tolerance, as demonstrated by improved membrane stability, elevated antioxidant enzyme activity, and reduced reactive oxygen species (ROS) accumulation. In contrast, SlSP5G knockout lines were more susceptible to high-temperature stress. This study provides a comprehensive analysis of the SlSP gene family, offering novel insights into the mechanism of SlSP5G-mediated heat stress tolerance in tomato.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.