Dissociation of hydrogen and formation of water at the (010) and (111) surfaces of orthorhombic FeNbO4.

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Chemphyschem Pub Date : 2025-01-20 DOI:10.1002/cphc.202400781
Xingyu Wang, David Santos-Carballal, Nora de Leeuw
{"title":"Dissociation of hydrogen and formation of water at the (010) and (111) surfaces of orthorhombic FeNbO4.","authors":"Xingyu Wang, David Santos-Carballal, Nora de Leeuw","doi":"10.1002/cphc.202400781","DOIUrl":null,"url":null,"abstract":"<p><p>The orthorhombic structure of FeNbO4, where the Fe and Nb cations are distributed randomly over the octahedral 4c sites, has shown excellent promise as an anode material in solid oxide fuel cells. We have used DFT+U-D2 calculations to explore the adsorption and dissociation of H2 molecules and the formation reaction of water at the (010) and (111) surfaces. Simulations of the surface properties confirmed that the bandgaps are significantly reduced compared to the bulk material. We found that the hydrogen molecule prefers to dissociate at the O bridge sites of the (010) and (111) surfaces, especially where these are coordinated to Fe cations, thereby forming two hydroxyl groups. We have investigated the water formation reaction and found that the energy barriers for migration of the H ions are generally lower for the Fe/Nb-O sites than for the O-O site. Overall, our simulations predict that after dissociation, the H atoms tend to remain stable in the form of Olayer-H groups, whereas a larger barrier needs to be overcome to achieve the formation of water. Future work will focus on potential surface modifications to reduce further the barrier of migration of the dissociated H ions, especially from the oxygen bridge sites.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400781"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400781","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The orthorhombic structure of FeNbO4, where the Fe and Nb cations are distributed randomly over the octahedral 4c sites, has shown excellent promise as an anode material in solid oxide fuel cells. We have used DFT+U-D2 calculations to explore the adsorption and dissociation of H2 molecules and the formation reaction of water at the (010) and (111) surfaces. Simulations of the surface properties confirmed that the bandgaps are significantly reduced compared to the bulk material. We found that the hydrogen molecule prefers to dissociate at the O bridge sites of the (010) and (111) surfaces, especially where these are coordinated to Fe cations, thereby forming two hydroxyl groups. We have investigated the water formation reaction and found that the energy barriers for migration of the H ions are generally lower for the Fe/Nb-O sites than for the O-O site. Overall, our simulations predict that after dissociation, the H atoms tend to remain stable in the form of Olayer-H groups, whereas a larger barrier needs to be overcome to achieve the formation of water. Future work will focus on potential surface modifications to reduce further the barrier of migration of the dissociated H ions, especially from the oxygen bridge sites.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
期刊最新文献
Dynamics of Pyrene Excimer in a Cholesteryl-based Supramolecular Host Matrix. RF Heating Effects in CEST NMR with Hyperpolarized 129Xe Considering Different Spin Exchange Kinetics and Saturation Schemes. Dissociation of hydrogen and formation of water at the (010) and (111) surfaces of orthorhombic FeNbO4. Perturbing Pentalene: Aromaticity and Antiaromaticity in a Non-alternant Polycyclic Aromatic Hydrocarbon and BN-heteroanalogues. Ground and excited state aromaticity in azulene-based helicenes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1