Yannick Carissan, Albert Artigas, Yoann Coquerel, Cyril Terrioux, Nicolas Prcovic, Denis Hagebaum-Reignier, Amisadai Lorenzo Reyes, Fatim Ndeye Ndiaye
{"title":"Ground and excited state aromaticity in azulene-based helicenes.","authors":"Yannick Carissan, Albert Artigas, Yoann Coquerel, Cyril Terrioux, Nicolas Prcovic, Denis Hagebaum-Reignier, Amisadai Lorenzo Reyes, Fatim Ndeye Ndiaye","doi":"10.1002/cphc.202400833","DOIUrl":null,"url":null,"abstract":"<p><p>Electron delocalization is studied in the ground singlet and first excited triplet states of azulene-containing helicenes. After showing that the compounds we study can be synthesized, we show that they exhibit a charge separation in the ground state, which does not appear in their triplet excited state. Then, magnetically induced properties (IMS3D and ACID) and electron density decomposition methods (EDDB) are used to rationalize aromaticity in these systems. For azulene-based helicenes larger than a critical size, that is, for more than six fused cycles, unexpected aromatic delocalization circuits appear. This feature is understood via the decomposition of the wavefunction on sets of carefully chosen local electronic structures and fragment orbital diagrams.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400833"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400833","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electron delocalization is studied in the ground singlet and first excited triplet states of azulene-containing helicenes. After showing that the compounds we study can be synthesized, we show that they exhibit a charge separation in the ground state, which does not appear in their triplet excited state. Then, magnetically induced properties (IMS3D and ACID) and electron density decomposition methods (EDDB) are used to rationalize aromaticity in these systems. For azulene-based helicenes larger than a critical size, that is, for more than six fused cycles, unexpected aromatic delocalization circuits appear. This feature is understood via the decomposition of the wavefunction on sets of carefully chosen local electronic structures and fragment orbital diagrams.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.