Using synthetic biology to express nitrogenase biosynthesis pathway in rice and to overcome barriers of nitrogenase instability in plant cytosol.

IF 14.3 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Trends in biotechnology Pub Date : 2025-01-15 DOI:10.1016/j.tibtech.2024.12.002
Yimin Shang, Haowen Shi, Minzhi Liu, Peichun Lan, Deyu Li, Xiaomeng Liu, Minyang Wang, Zhiguo Zhang, Sanfeng Chen
{"title":"Using synthetic biology to express nitrogenase biosynthesis pathway in rice and to overcome barriers of nitrogenase instability in plant cytosol.","authors":"Yimin Shang, Haowen Shi, Minzhi Liu, Peichun Lan, Deyu Li, Xiaomeng Liu, Minyang Wang, Zhiguo Zhang, Sanfeng Chen","doi":"10.1016/j.tibtech.2024.12.002","DOIUrl":null,"url":null,"abstract":"<p><p>Engineering nitrogen fixation in cereals could reduce usage of chemical nitrogen fertilizers. Here, a nitrogenase biosynthesis pathway comprising 13 genes (nifB nifH nifD nifK nifE nifN nifX hesA nifV nifS nifU groES groEL) was introduced into rice by transforming multigene vectors and subsequently by sexual crossing between transgenic rice plants. Genome sequencing analysis revealed that 13 nif genes in F<sub>4</sub> hybrid rice lines L12-13 and L8-17 were inserted at two loci on rice chromosome 1. Eleven nitrogen fixation (Nif) proteins were produced and stable NifDK tetramer was formed in rice cytosol. NifH in rice cytosol was unstable and NifH-S18 was found to be a key residue that conferred susceptibility to proteinase degradation. NifH variants with Fe protein activity and resistance to plant endoproteinase cleavage were obtained. This study provides an efficient approach for introducing multiple nif genes into plants and also helps to pre-evaluate the stability of prokaryotic proteins in plant cytosol.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2024.12.002","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Engineering nitrogen fixation in cereals could reduce usage of chemical nitrogen fertilizers. Here, a nitrogenase biosynthesis pathway comprising 13 genes (nifB nifH nifD nifK nifE nifN nifX hesA nifV nifS nifU groES groEL) was introduced into rice by transforming multigene vectors and subsequently by sexual crossing between transgenic rice plants. Genome sequencing analysis revealed that 13 nif genes in F4 hybrid rice lines L12-13 and L8-17 were inserted at two loci on rice chromosome 1. Eleven nitrogen fixation (Nif) proteins were produced and stable NifDK tetramer was formed in rice cytosol. NifH in rice cytosol was unstable and NifH-S18 was found to be a key residue that conferred susceptibility to proteinase degradation. NifH variants with Fe protein activity and resistance to plant endoproteinase cleavage were obtained. This study provides an efficient approach for introducing multiple nif genes into plants and also helps to pre-evaluate the stability of prokaryotic proteins in plant cytosol.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用合成生物学技术表达水稻氮酶生物合成途径,克服植物细胞质中氮酶不稳定性的障碍。
谷物工程固氮可以减少化学氮肥的使用。本研究通过转化多基因载体,将一条包含13个基因(nifB、nifH、nifD、nifK、nifE、nifN、nifX、hesA、nifV、nifS、nifU、groES、groEL)的氮酶生物合成途径引入水稻,并在转基因水稻植株间进行性杂交。基因组测序分析表明,F4杂交稻L12-13和L8-17的13个nif基因在水稻1号染色体上的两个位点上插入。在水稻细胞质中产生了11个固氮蛋白,并形成了稳定的NifDK四聚体。水稻细胞质中的NifH是不稳定的,NifH- s18被发现是对蛋白酶降解敏感的关键残基。获得了具有铁蛋白活性和抗植物内源性蛋白酶裂解的NifH变异体。该研究为将多个nif基因导入植物提供了一种有效的方法,也有助于预评价植物细胞质中原核蛋白的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Trends in biotechnology
Trends in biotechnology 工程技术-生物工程与应用微生物
CiteScore
28.60
自引率
1.20%
发文量
198
审稿时长
1 months
期刊介绍: Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems. The major themes that TIBTECH is interested in include: Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering) Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology) Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics) Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery) Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).
期刊最新文献
Platelet extracellular vesicles-loaded hydrogel bandages for personalized wound care. Automated adjustment of metabolic niches enables the control of natural and engineered microbial co-cultures. Distillation for in situ recovery of volatile fermentation products. Understanding bacterial ecology to combat antibiotic resistance dissemination. High-throughput screening strategies for plastic-depolymerizing enzymes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1