Cerebrovascular Reactivity Mapping in Brain Tumors Based on a Breath-Hold Task Using Arterial Spin Labeling.

IF 2.7 4区 医学 Q2 BIOPHYSICS NMR in Biomedicine Pub Date : 2025-03-01 DOI:10.1002/nbm.5317
Marta Calvo-Imirizaldu, Sergio M Solis-Barquero, Verónica Aramendía-Vidaurreta, Reyes García de Eulate, Pablo Domínguez, Marta Vidorreta, José I Echeveste, Allan Argueta, Elena Cacho-Asenjo, Antonio Martinez-Simon, Bartolomé Bejarano, María A Fernández-Seara
{"title":"Cerebrovascular Reactivity Mapping in Brain Tumors Based on a Breath-Hold Task Using Arterial Spin Labeling.","authors":"Marta Calvo-Imirizaldu, Sergio M Solis-Barquero, Verónica Aramendía-Vidaurreta, Reyes García de Eulate, Pablo Domínguez, Marta Vidorreta, José I Echeveste, Allan Argueta, Elena Cacho-Asenjo, Antonio Martinez-Simon, Bartolomé Bejarano, María A Fernández-Seara","doi":"10.1002/nbm.5317","DOIUrl":null,"url":null,"abstract":"<p><p>Hemodynamic measurements such as cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) can provide useful information for the diagnosis and characterization of brain tumors. Previous work showed that arterial spin labeling (ASL) in combination with vasoactive stimulation enabled simultaneous non-invasive evaluation of both parameters, however this approach had not been previously tested in tumors. The aim of this work was to investigate the application of this technique, using a pseudo-continuous ASL (PCASL) sequence combined with breath-holding at 3 T, to measure CBF and CVR in high-grade gliomas and metastatic lesions, and to explore differences across tumoral-peritumoral regions and tumor types. To that end, 27 patients with brain tumor were studied. Baseline CBF and CVR were measured in tumor, edema, and gray matter (GM) volumes-of-interest (VOIs). Peritumoral ipsilateral ring-shaped VOIs were also generated and mirrored to the contralateral hemisphere. Differences in baseline CBF and CVR were evaluated between contralateral and ipsilateral GM, contralateral and ipsilateral peritumoral rings, and among VOIs and tumor types. CBF in the tumor was higher in grade 4 gliomas than metastases. In grade 4 gliomas, edema had lower CBF than the tumor and contralateral GM. CVR values were different between grade 3 and grade 4 gliomas, and between grade 4 and metastases. CVR values in the tumor were lower compared to the contralateral GM. Differences in CVR between contralateral and ipsilateral-ring VOIs were also found in grade 4 gliomas, presumably suggesting tumor infiltration within the peritumoral tissue. A cut-off value for CVR of 27.9%-signal-change is suggested to differentiate between grade 3 and grade 4 gliomas (specificity = 83.3%, sensitivity = 70.6%). In conclusion, CBF and CVR mapping with ASL offered insights into the perilesional environment that could help to detect infiltrative disease, particularly in grade 4 gliomas. CVR emerged as a potential biomarker to differentiate between grade 3 and grade 4 gliomas.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 3","pages":"e5317"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754703/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5317","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Hemodynamic measurements such as cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) can provide useful information for the diagnosis and characterization of brain tumors. Previous work showed that arterial spin labeling (ASL) in combination with vasoactive stimulation enabled simultaneous non-invasive evaluation of both parameters, however this approach had not been previously tested in tumors. The aim of this work was to investigate the application of this technique, using a pseudo-continuous ASL (PCASL) sequence combined with breath-holding at 3 T, to measure CBF and CVR in high-grade gliomas and metastatic lesions, and to explore differences across tumoral-peritumoral regions and tumor types. To that end, 27 patients with brain tumor were studied. Baseline CBF and CVR were measured in tumor, edema, and gray matter (GM) volumes-of-interest (VOIs). Peritumoral ipsilateral ring-shaped VOIs were also generated and mirrored to the contralateral hemisphere. Differences in baseline CBF and CVR were evaluated between contralateral and ipsilateral GM, contralateral and ipsilateral peritumoral rings, and among VOIs and tumor types. CBF in the tumor was higher in grade 4 gliomas than metastases. In grade 4 gliomas, edema had lower CBF than the tumor and contralateral GM. CVR values were different between grade 3 and grade 4 gliomas, and between grade 4 and metastases. CVR values in the tumor were lower compared to the contralateral GM. Differences in CVR between contralateral and ipsilateral-ring VOIs were also found in grade 4 gliomas, presumably suggesting tumor infiltration within the peritumoral tissue. A cut-off value for CVR of 27.9%-signal-change is suggested to differentiate between grade 3 and grade 4 gliomas (specificity = 83.3%, sensitivity = 70.6%). In conclusion, CBF and CVR mapping with ASL offered insights into the perilesional environment that could help to detect infiltrative disease, particularly in grade 4 gliomas. CVR emerged as a potential biomarker to differentiate between grade 3 and grade 4 gliomas.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
NMR in Biomedicine
NMR in Biomedicine 医学-光谱学
CiteScore
6.00
自引率
10.30%
发文量
209
审稿时长
3-8 weeks
期刊介绍: NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.
期刊最新文献
Cerebrovascular Reactivity Mapping in Brain Tumors Based on a Breath-Hold Task Using Arterial Spin Labeling. Quantification of NAD+ T1 and T2 Relaxation Times Using Downfield 1H MRS at 7 T in Human Brain In Vivo. Concentric Ring Trajectory Sampling With k-Space Reordering Enables Assessment of Tissue-Specific T1 and T2 Relaxation for 2H-Labeled Substrates in the Human Brain at 7 T. Fast High-Resolution Metabolite Mapping in the rat Brain Using 1H-FID-MRSI at 14.1 T. Automated White Matter Fiber Tract Segmentation for the Brainstem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1