Quantification of NAD+ T1 and T2 Relaxation Times Using Downfield 1H MRS at 7 T in Human Brain In Vivo.

IF 2.7 4区 医学 Q2 BIOPHYSICS NMR in Biomedicine Pub Date : 2025-03-01 DOI:10.1002/nbm.5324
Sophia Swago, Neil E Wilson, Mark A Elliott, Ravi Prakash Reddy Nanga, Ravinder Reddy, Walter R Witschey
{"title":"Quantification of NAD<sup>+</sup> T<sub>1</sub> and T<sub>2</sub> Relaxation Times Using Downfield <sup>1</sup>H MRS at 7 T in Human Brain In Vivo.","authors":"Sophia Swago, Neil E Wilson, Mark A Elliott, Ravi Prakash Reddy Nanga, Ravinder Reddy, Walter R Witschey","doi":"10.1002/nbm.5324","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to measure T<sub>1</sub> and T<sub>2</sub> relaxation times of NAD<sup>+</sup> proton resonances in the downfield <sup>1</sup>H MRS spectrum in human brain at 7 T in vivo and to assess the propagation of relaxation time uncertainty in NAD<sup>+</sup> quantification. Downfield spectra from eight healthy volunteers were acquired at multiple echo times to measure T<sub>2</sub> relaxation times, and saturation recovery data were acquired to measure T<sub>1</sub> relaxation times. The downfield acquisition used a spectrally selective 90° sinc pulse for excitation centered at 9.1 ppm with a bandwidth of 2 ppm, followed by a 180° spatially selective Shinnar-Le Roux refocusing pulse for localization. Uncertainty propagation analysis on metabolite quantification was performed analytically and with Monte Carlo simulation. [NAD<sup>+</sup>] was quantified in five participants. The mean ± standard deviation of T<sub>1</sub> relaxation times of the H2, H6, and H4 NAD<sup>+</sup> protons were 205.6 ± 25.7, 211.6 ± 33.5, and 237.3 ± 42.4 ms, respectively. The mean ± standard deviation of T<sub>2</sub> relaxation times of the H2, H6, and H4 protons were 33.6 ± 7.4, 29.1 ± 4.7, and 42.3 ± 11.6 ms, respectively. The relative uncertainty in NAD<sup>+</sup> concentration due to relaxation time uncertainty was 8.4%-11.4%, and measured brain [NAD<sup>+</sup>] (N = 5) was 0.324 ± 0.050 mM. Using downfield spectrally selective spectroscopy with single-slice localization, we found T<sub>1</sub> and T<sub>2</sub> relaxation times averaged across all NAD<sup>+</sup> resonances to be approximately 218 and 35 ms, respectively, in the human brain in vivo at 7 T.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 3","pages":"e5324"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5324","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study was to measure T1 and T2 relaxation times of NAD+ proton resonances in the downfield 1H MRS spectrum in human brain at 7 T in vivo and to assess the propagation of relaxation time uncertainty in NAD+ quantification. Downfield spectra from eight healthy volunteers were acquired at multiple echo times to measure T2 relaxation times, and saturation recovery data were acquired to measure T1 relaxation times. The downfield acquisition used a spectrally selective 90° sinc pulse for excitation centered at 9.1 ppm with a bandwidth of 2 ppm, followed by a 180° spatially selective Shinnar-Le Roux refocusing pulse for localization. Uncertainty propagation analysis on metabolite quantification was performed analytically and with Monte Carlo simulation. [NAD+] was quantified in five participants. The mean ± standard deviation of T1 relaxation times of the H2, H6, and H4 NAD+ protons were 205.6 ± 25.7, 211.6 ± 33.5, and 237.3 ± 42.4 ms, respectively. The mean ± standard deviation of T2 relaxation times of the H2, H6, and H4 protons were 33.6 ± 7.4, 29.1 ± 4.7, and 42.3 ± 11.6 ms, respectively. The relative uncertainty in NAD+ concentration due to relaxation time uncertainty was 8.4%-11.4%, and measured brain [NAD+] (N = 5) was 0.324 ± 0.050 mM. Using downfield spectrally selective spectroscopy with single-slice localization, we found T1 and T2 relaxation times averaged across all NAD+ resonances to be approximately 218 and 35 ms, respectively, in the human brain in vivo at 7 T.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
NMR in Biomedicine
NMR in Biomedicine 医学-光谱学
CiteScore
6.00
自引率
10.30%
发文量
209
审稿时长
3-8 weeks
期刊介绍: NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.
期刊最新文献
Cerebrovascular Reactivity Mapping in Brain Tumors Based on a Breath-Hold Task Using Arterial Spin Labeling. Quantification of NAD+ T1 and T2 Relaxation Times Using Downfield 1H MRS at 7 T in Human Brain In Vivo. Concentric Ring Trajectory Sampling With k-Space Reordering Enables Assessment of Tissue-Specific T1 and T2 Relaxation for 2H-Labeled Substrates in the Human Brain at 7 T. Fast High-Resolution Metabolite Mapping in the rat Brain Using 1H-FID-MRSI at 14.1 T. Automated White Matter Fiber Tract Segmentation for the Brainstem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1