An interpretable machine learning framework for enhancing road transportation safety

Ismail Abdulrashid, Wen-Chyuan Chiang, Jiuh-Biing Sheu, Shamkhal Mammadov
{"title":"An interpretable machine learning framework for enhancing road transportation safety","authors":"Ismail Abdulrashid, Wen-Chyuan Chiang, Jiuh-Biing Sheu, Shamkhal Mammadov","doi":"10.1016/j.tre.2025.103969","DOIUrl":null,"url":null,"abstract":"This study presents a comprehensive decision-making framework that employs eXplainable Artificial Intelligence (XAI)-based methods to improve proactive road transport safety management, which is critical for global supply chain networks. The framework offers explainable predictions as well as suggestions pertaining to the near-future digitization of safety tools and their usage, customized for road transport safety management. We employed four black-box machine learning-based models—artificial neural network (ANN), support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost)—in this setting to enhance our comprehension of the crash-related risk factors that contribute to the severity of traffic accident injuries. Due to their opaqueness and complex inner workings, stakeholders often perceive these models as data-driven black-box approaches, making them incapable of providing an efficient decision-support tool. The recommended decision support incorporates agreement levels for predictions and interpretation across various XAI modeling paradigms. We deploy PFI (Permutation Feature Importance) and FIRM (Feature Importance Ranking Measures) tools to evaluate the extent of agreement in explainability between these various modeling approaches. The recommendations are based on PFI and FIRM values of highly performing models. We execute the framework as an illustration of the concept using a real crash dataset obtained from the NHTSA (National Highway Transportation Safety Administration of the United States) and report end-user feedback for use by transport policymakers.","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"38 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tre.2025.103969","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a comprehensive decision-making framework that employs eXplainable Artificial Intelligence (XAI)-based methods to improve proactive road transport safety management, which is critical for global supply chain networks. The framework offers explainable predictions as well as suggestions pertaining to the near-future digitization of safety tools and their usage, customized for road transport safety management. We employed four black-box machine learning-based models—artificial neural network (ANN), support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost)—in this setting to enhance our comprehension of the crash-related risk factors that contribute to the severity of traffic accident injuries. Due to their opaqueness and complex inner workings, stakeholders often perceive these models as data-driven black-box approaches, making them incapable of providing an efficient decision-support tool. The recommended decision support incorporates agreement levels for predictions and interpretation across various XAI modeling paradigms. We deploy PFI (Permutation Feature Importance) and FIRM (Feature Importance Ranking Measures) tools to evaluate the extent of agreement in explainability between these various modeling approaches. The recommendations are based on PFI and FIRM values of highly performing models. We execute the framework as an illustration of the concept using a real crash dataset obtained from the NHTSA (National Highway Transportation Safety Administration of the United States) and report end-user feedback for use by transport policymakers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.20
自引率
16.00%
发文量
285
审稿时长
62 days
期刊介绍: Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management. Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.
期刊最新文献
Multi-agent deep reinforcement learning-based truck-drone collaborative routing with dynamic emergency response Enhancing resilience in supply chains through resource orchestration and AI assimilation: An empirical exploration An interpretable machine learning framework for enhancing road transportation safety Shared use of dedicated lanes by connected and automated buses and private vehicles: A multi-green-wave signal control scheme Is operational flexibility a viable strategy during major supply chain disruptions? Evidence from the COVID-19 pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1