Wanessa J. Santana Mota, Jessica R. de Jesus, Ana P. Justiniano Rego, Ayslan S. P. da Costa, Valdemar L. Tornisielo, Katlin I. Barrios Eguiluz, Giancarlo R. Salazar-Banda, Maria L. Hernández-Macedo, Jorge A. López
{"title":"Combatting pesticide pollution: using liquid scintillation spectrometry to assess 14C-labeled hexachlorobenzene removal by mangrove Bacillus spp.","authors":"Wanessa J. Santana Mota, Jessica R. de Jesus, Ana P. Justiniano Rego, Ayslan S. P. da Costa, Valdemar L. Tornisielo, Katlin I. Barrios Eguiluz, Giancarlo R. Salazar-Banda, Maria L. Hernández-Macedo, Jorge A. López","doi":"10.1007/s10532-025-10113-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study explored the ability of two <i>Bacillus</i> species isolated from mangrove sediments to degrade hexachlorobenzene (HCB), a persistent organic pollutant that affects the quality of surface water, groundwater, and soil. Hence, we analyzed bacterial growth in a medium with hexachlorobenzene as the sole carbon source. Moreover, chemical oxygen demand removal, ecotoxicity, and measured radiolabeled HCB degradation were assessed. Our results revealed that both <i>Bacillus</i> strains (I3 and I6) demonstrated hexachlorobenzene-degrading potential and achieved degradation rates of 11.5 ± 1.47% and 21.1 ± 0.84%. Additionally, the ability of these strains to mineralize HCB was confirmed by the production of radiolabeled carbon dioxide, assessed by liquid scintillation spectrometry and thin-layer chromatography. Ecotoxicity assays further demonstrated the effectiveness of bacteria treatment in degrading HCB. These findings underscore the potential of <i>Bacillus</i> strains from mangrove sediments to degrade and mineralize HCB, opening new perspectives for the bioremediation of aromatic compounds in contaminated environments.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-025-10113-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explored the ability of two Bacillus species isolated from mangrove sediments to degrade hexachlorobenzene (HCB), a persistent organic pollutant that affects the quality of surface water, groundwater, and soil. Hence, we analyzed bacterial growth in a medium with hexachlorobenzene as the sole carbon source. Moreover, chemical oxygen demand removal, ecotoxicity, and measured radiolabeled HCB degradation were assessed. Our results revealed that both Bacillus strains (I3 and I6) demonstrated hexachlorobenzene-degrading potential and achieved degradation rates of 11.5 ± 1.47% and 21.1 ± 0.84%. Additionally, the ability of these strains to mineralize HCB was confirmed by the production of radiolabeled carbon dioxide, assessed by liquid scintillation spectrometry and thin-layer chromatography. Ecotoxicity assays further demonstrated the effectiveness of bacteria treatment in degrading HCB. These findings underscore the potential of Bacillus strains from mangrove sediments to degrade and mineralize HCB, opening new perspectives for the bioremediation of aromatic compounds in contaminated environments.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.