Degradation of polyvinyl chloride (PVC) microplastics employing the actinobacterial strain Streptomyces gobitricini

IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biodegradation Pub Date : 2025-02-07 DOI:10.1007/s10532-025-10115-7
Fuad Ameen, Hind A. Al-Shwaiman, Rania Almalki, Ahmed E. Al-Sabri, Essam N. Sholkamy
{"title":"Degradation of polyvinyl chloride (PVC) microplastics employing the actinobacterial strain Streptomyces gobitricini","authors":"Fuad Ameen,&nbsp;Hind A. Al-Shwaiman,&nbsp;Rania Almalki,&nbsp;Ahmed E. Al-Sabri,&nbsp;Essam N. Sholkamy","doi":"10.1007/s10532-025-10115-7","DOIUrl":null,"url":null,"abstract":"<div><p>The disposal of plastic materials has resulted in the huge increase of microplastics in the environment. One of the most hazardous plastic waste is polyvinyl chloride (PVC) due to its durability. A tool to remediate PVC microplastic polluted environment might be offered by microorganisms such as Actinobacteria, which has been proven to degrade PVC. <i>Streptomyces gobitricini</i> was isolated from soil polluted by heavy metals and plastic debris and used in a PVC microplastics degradation experiment. Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, and scanning electron microscopy (SEM) were used to study the characteristics of microplastic particles. For the incubation, the optimal pH 7.5 was determined in a preliminary experiment where also pH 5.5 and pH 9.5 were included. Three PVC concentrations (200, 400, and 800 mg/L) were incubated in Luria–Bertani broth with <i>S. gobitricini</i> for 90 days. After the incubation, PVC-MP particles were recovered by filtering. The percentual weight loss of microplastics was highest (66%) in 200 mg/L treatment. Relatively high reductions were observed for the higher microplastic concentrations as well (400 mg/L; 65% and 800 mg/L; 60%). The bacterial growth decreased in order 200 mg/L (3.1 ± 0.1 CFU × 10<sup>5</sup>/mL), 400 mg/L (3.0 ± 0.0 CFU × 10<sup>5</sup>/mL) and 800 mg/L treatment (2.7 ± 0.0 CFU × 10<sup>5</sup>/mL). High hydrophobicity was observed in all treatments at the end of the incubation indicating the formation of bacterial biofilm on the surfaces of plastic particles. The highest hydrophobicity (84%) associated with the bacterial strain was observed in 200 mg/L microplastics treatment. The results show that the bacterium <i>S. gobitricini</i> suits for further studies to reduce PVC microplastic waste in the environment.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-025-10115-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The disposal of plastic materials has resulted in the huge increase of microplastics in the environment. One of the most hazardous plastic waste is polyvinyl chloride (PVC) due to its durability. A tool to remediate PVC microplastic polluted environment might be offered by microorganisms such as Actinobacteria, which has been proven to degrade PVC. Streptomyces gobitricini was isolated from soil polluted by heavy metals and plastic debris and used in a PVC microplastics degradation experiment. Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, and scanning electron microscopy (SEM) were used to study the characteristics of microplastic particles. For the incubation, the optimal pH 7.5 was determined in a preliminary experiment where also pH 5.5 and pH 9.5 were included. Three PVC concentrations (200, 400, and 800 mg/L) were incubated in Luria–Bertani broth with S. gobitricini for 90 days. After the incubation, PVC-MP particles were recovered by filtering. The percentual weight loss of microplastics was highest (66%) in 200 mg/L treatment. Relatively high reductions were observed for the higher microplastic concentrations as well (400 mg/L; 65% and 800 mg/L; 60%). The bacterial growth decreased in order 200 mg/L (3.1 ± 0.1 CFU × 105/mL), 400 mg/L (3.0 ± 0.0 CFU × 105/mL) and 800 mg/L treatment (2.7 ± 0.0 CFU × 105/mL). High hydrophobicity was observed in all treatments at the end of the incubation indicating the formation of bacterial biofilm on the surfaces of plastic particles. The highest hydrophobicity (84%) associated with the bacterial strain was observed in 200 mg/L microplastics treatment. The results show that the bacterium S. gobitricini suits for further studies to reduce PVC microplastic waste in the environment.

Graphical abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biodegradation
Biodegradation 工程技术-生物工程与应用微生物
CiteScore
5.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms. Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.
期刊最新文献
Degradation of polyvinyl chloride (PVC) microplastics employing the actinobacterial strain Streptomyces gobitricini Combatting pesticide pollution: using liquid scintillation spectrometry to assess 14C-labeled hexachlorobenzene removal by mangrove Bacillus spp. Investıgatıon of seam performance and bıodegradabılıty of organıc cotton clothes for theır sustaınabılıty Valorization of chicken feathers for polyhydroxyalkanoates production using Rohodococcus quinshengii LS18 and the biodegradation studies with the extracted polymer and its blends Isolation, characterization, and mycostimulation of fungi for the degradation of polycyclic aromatic hydrocarbons at a superfund site
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1