Prototype of AI-powered assistance system for digitalisation of manual waste sorting.

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Waste management Pub Date : 2025-01-24 DOI:10.1016/j.wasman.2025.01.027
J Aberger, S Shami, B Häcker, J Pestana, K Khodier, R Sarc
{"title":"Prototype of AI-powered assistance system for digitalisation of manual waste sorting.","authors":"J Aberger, S Shami, B Häcker, J Pestana, K Khodier, R Sarc","doi":"10.1016/j.wasman.2025.01.027","DOIUrl":null,"url":null,"abstract":"<p><p>Global waste generation is projected to reach 3.40 billion tons by 2050, necessitating improved waste sorting for effective recycling and progress toward a circular economy. Achieving this transformation requires higher sorting intensity through intensified processes, increased efficiency, and enhanced yield. While manual sorting remains common, smaller plants often use positive sorting to recover recyclables, and larger plants combine automated systems with manual sorting. Negative sorting is employed to remove impurities and improve material quality. However, innovation in manual sorting has stagnated. Advances in Machine Learning and Artificial Intelligence offer transformative potential for waste management, with digitalisation and improved recyclate quality becoming priorities. Despite these trends, manual sorting is still largely treated as a digital black box. The presented research outlines the design of a novel, human-centric AI-powered assistance system to support sorting workers by enhancing decision-making and real-time assistance during the sorting process, driving the digitalisation of manual sorting. Potential use cases, system requirements, and essential components were explored. High-quality use case-specific data is essential for model training. Therefore, publicly available datasets were evaluated but found inadequate, necessitating use-case-specific data acquisition through near-industry-scale experiments. This data was used to train and develop key system components, such as object recognition, classification, and action recognition models. Results indicate that transfer learning with a balanced dataset is effective for waste-sorting applications. The classification model achieved 81% accuracy on an experimental acquired balanced dataset, outperforming the accuracy of the pre-trained model on its original dataset.</p>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"194 ","pages":"366-378"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.wasman.2025.01.027","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Global waste generation is projected to reach 3.40 billion tons by 2050, necessitating improved waste sorting for effective recycling and progress toward a circular economy. Achieving this transformation requires higher sorting intensity through intensified processes, increased efficiency, and enhanced yield. While manual sorting remains common, smaller plants often use positive sorting to recover recyclables, and larger plants combine automated systems with manual sorting. Negative sorting is employed to remove impurities and improve material quality. However, innovation in manual sorting has stagnated. Advances in Machine Learning and Artificial Intelligence offer transformative potential for waste management, with digitalisation and improved recyclate quality becoming priorities. Despite these trends, manual sorting is still largely treated as a digital black box. The presented research outlines the design of a novel, human-centric AI-powered assistance system to support sorting workers by enhancing decision-making and real-time assistance during the sorting process, driving the digitalisation of manual sorting. Potential use cases, system requirements, and essential components were explored. High-quality use case-specific data is essential for model training. Therefore, publicly available datasets were evaluated but found inadequate, necessitating use-case-specific data acquisition through near-industry-scale experiments. This data was used to train and develop key system components, such as object recognition, classification, and action recognition models. Results indicate that transfer learning with a balanced dataset is effective for waste-sorting applications. The classification model achieved 81% accuracy on an experimental acquired balanced dataset, outperforming the accuracy of the pre-trained model on its original dataset.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
期刊最新文献
An inventory analysis of waste tyre generation and management in South Africa. Prototype of AI-powered assistance system for digitalisation of manual waste sorting. Utilization of municipal solid waste incineration fly ash with different pretreatments with gold tailings and coal fly ash for environmentally friendly geopolymers. Household waste-specific ambient air shows greater inhalable antimicrobial resistance risks in densely populated communities. Quality appraisal of household recycling influences research found evidence was mostly insufficient for drawing conclusions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1