Behavioral and neurophysiological effects of electrical stunning on zebrafish larvae

IF 5.9 3区 农林科学 Q1 VETERINARY SCIENCES Lab Animal Pub Date : 2025-01-27 DOI:10.1038/s41684-024-01505-0
David-Samuel Burkhardt, Claire Leyden, Carina Thomas, Christian Brysch, Florian Alexander Dehmelt, Aristides B. Arrenberg
{"title":"Behavioral and neurophysiological effects of electrical stunning on zebrafish larvae","authors":"David-Samuel Burkhardt, Claire Leyden, Carina Thomas, Christian Brysch, Florian Alexander Dehmelt, Aristides B. Arrenberg","doi":"10.1038/s41684-024-01505-0","DOIUrl":null,"url":null,"abstract":"<p>Two methods dominate the way that zebrafish larvae are euthanized after experimental procedures: anesthetic overdose and rapid cooling. Although MS-222 is easy to apply, this anesthetic takes about a minute to act and fish show aversive reactions and interindividual differences, limiting its reliability. Rapid cooling kills larvae after several hours and is not listed as an approved method in the relevant European Union directive. Electrical stunning is a promising alternative euthanasia method for zebrafish but has not yet been fully established. Here we characterize both behavioral and neurophysiological effects of electrical stunning in 4-day-old zebrafish larvae. We identified the electric field characteristics and stimulus duration (50 V/cm alternating current for 32 s) that reliably euthanizes free-swimming larvae and agarose-embedded larvae with an easy-to-implement protocol. Behavioral analysis and calcium neurophysiology show that larvae lose consciousness and stop responding to touch and visual stimuli very quickly (&lt;1 s). Electrically stunned larvae no longer show coordinated brain activity. Their brains instead undergo a series of concerted whole-brain calcium waves over the course of many minutes before the cessation of all brain signals. Consistent with the need to implement the 3R at all stages of animal experimentation, the rapid and reliable euthanasia achieved by electrical stunning has potential for refinement of the welfare of more than 5 million zebrafish used annually in biomedical research worldwide.</p>","PeriodicalId":17936,"journal":{"name":"Lab Animal","volume":"22 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab Animal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1038/s41684-024-01505-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Two methods dominate the way that zebrafish larvae are euthanized after experimental procedures: anesthetic overdose and rapid cooling. Although MS-222 is easy to apply, this anesthetic takes about a minute to act and fish show aversive reactions and interindividual differences, limiting its reliability. Rapid cooling kills larvae after several hours and is not listed as an approved method in the relevant European Union directive. Electrical stunning is a promising alternative euthanasia method for zebrafish but has not yet been fully established. Here we characterize both behavioral and neurophysiological effects of electrical stunning in 4-day-old zebrafish larvae. We identified the electric field characteristics and stimulus duration (50 V/cm alternating current for 32 s) that reliably euthanizes free-swimming larvae and agarose-embedded larvae with an easy-to-implement protocol. Behavioral analysis and calcium neurophysiology show that larvae lose consciousness and stop responding to touch and visual stimuli very quickly (<1 s). Electrically stunned larvae no longer show coordinated brain activity. Their brains instead undergo a series of concerted whole-brain calcium waves over the course of many minutes before the cessation of all brain signals. Consistent with the need to implement the 3R at all stages of animal experimentation, the rapid and reliable euthanasia achieved by electrical stunning has potential for refinement of the welfare of more than 5 million zebrafish used annually in biomedical research worldwide.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Lab Animal
Lab Animal 农林科学-兽医学
CiteScore
0.60
自引率
2.90%
发文量
181
审稿时长
>36 weeks
期刊介绍: LabAnimal is a Nature Research journal dedicated to in vivo science and technology that improves our basic understanding and use of model organisms of human health and disease. In addition to basic research, methods and technologies, LabAnimal also covers important news, business and regulatory matters that impact the development and application of model organisms for preclinical research. LabAnimal's focus is on innovative in vivo methods, research and technology covering a wide range of model organisms. Our broad scope ensures that the work we publish reaches the widest possible audience. LabAnimal provides a rigorous and fair peer review of manuscripts, high standards for copyediting and production, and efficient publication.
期刊最新文献
Behavioral and neurophysiological effects of electrical stunning on zebrafish larvae Aerobic exercise improves concussion symptoms In vivo starvation metabolic adaptations Vaping mice Mito-NAD(P)H age clocks in C.elegans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1