Guocheng Shao, Tiankuang Zhou, Tao Yan, Yanchen Guo, Yun Zhao, Ruqi Huang, Lu Fang
{"title":"Reliable, efficient, and scalable photonic inverse design empowered by physics-inspired deep learning","authors":"Guocheng Shao, Tiankuang Zhou, Tao Yan, Yanchen Guo, Yun Zhao, Ruqi Huang, Lu Fang","doi":"10.1515/nanoph-2024-0504","DOIUrl":null,"url":null,"abstract":"On-chip computing metasystems composed of multilayer metamaterials have the potential to become the next-generation computing hardware endowed with light-speed processing ability and low power consumption but are hindered by current design paradigms. To date, neither numerical nor analytical methods can balance efficiency and accuracy of the design process. To address the issue, a physics-inspired deep learning architecture termed electromagnetic neural network (EMNN) is proposed to enable an efficient, reliable, and flexible paradigm of inverse design. EMNN consists of two parts: EMNN Netlet serves as a local electromagnetic field solver; Huygens–Fresnel Stitch is used for concatenating local predictions. It can make direct, rapid, and accurate predictions of full-wave field based on input fields of arbitrary variations and structures of nonfixed size. With the aid of EMNN, we design computing metasystems that can perform handwritten digit recognition and speech command recognition. EMNN increases the design speed by 17,000 times than that of the analytical model and reduces the modeling error by two orders of magnitude compared to the numerical model. By integrating deep learning techniques with fundamental physical principle, EMNN manifests great interpretability and generalization ability beyond conventional networks. Additionally, it innovates a design paradigm that guarantees both high efficiency and high fidelity. Furthermore, the flexible paradigm can be applicable to the unprecedentedly challenging design of large-scale, high-degree-of-freedom, and functionally complex devices embodied by on-chip optical diffractive networks, so as to further promote the development of computing metasystems.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"25 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0504","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
On-chip computing metasystems composed of multilayer metamaterials have the potential to become the next-generation computing hardware endowed with light-speed processing ability and low power consumption but are hindered by current design paradigms. To date, neither numerical nor analytical methods can balance efficiency and accuracy of the design process. To address the issue, a physics-inspired deep learning architecture termed electromagnetic neural network (EMNN) is proposed to enable an efficient, reliable, and flexible paradigm of inverse design. EMNN consists of two parts: EMNN Netlet serves as a local electromagnetic field solver; Huygens–Fresnel Stitch is used for concatenating local predictions. It can make direct, rapid, and accurate predictions of full-wave field based on input fields of arbitrary variations and structures of nonfixed size. With the aid of EMNN, we design computing metasystems that can perform handwritten digit recognition and speech command recognition. EMNN increases the design speed by 17,000 times than that of the analytical model and reduces the modeling error by two orders of magnitude compared to the numerical model. By integrating deep learning techniques with fundamental physical principle, EMNN manifests great interpretability and generalization ability beyond conventional networks. Additionally, it innovates a design paradigm that guarantees both high efficiency and high fidelity. Furthermore, the flexible paradigm can be applicable to the unprecedentedly challenging design of large-scale, high-degree-of-freedom, and functionally complex devices embodied by on-chip optical diffractive networks, so as to further promote the development of computing metasystems.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.