{"title":"The Combination of Active-Targeted Photodynamic Therapy and Photoactivated Chemotherapy for Enhanced Cancer Treatment.","authors":"Nkune Williams Nkune, Heidi Abrahamse","doi":"10.1002/jbio.70005","DOIUrl":null,"url":null,"abstract":"<p><p>Scientists have been actively investigating novel therapies that can effectively eradicate cancer cells with negligible side effects in normal tissues when used alone or in a combinatorial approach. Photodynamic therapy has emerged as a promising non-invasive therapy that integrates photosensitizer, oxygen, and a specific wavelength of light for the treatment of cancer. Despite encouraging outcomes yielded by PDT, conventional PSs are faced with longstanding challenges such as poor water solubility, a short half-life, and off-target toxicity. Development of nanotherapeutics has shown great potential in overcoming this issue. The tumor microenvironment is inherently hypoxic, and this promotes tumor resistance to PDT, as it is oxygen-dependent. Photoactivated chemotherapy, an oxygen-independent light-based therapy, utilizes chemotherapeutic regimens that remain inert until exposed to light, allowing target-specific activation while minimizing off-target toxicity. Integration of these techniques can improve selectivity and yield synergistic cytotoxic effects that could improve cancer treatment.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e70005"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.70005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Scientists have been actively investigating novel therapies that can effectively eradicate cancer cells with negligible side effects in normal tissues when used alone or in a combinatorial approach. Photodynamic therapy has emerged as a promising non-invasive therapy that integrates photosensitizer, oxygen, and a specific wavelength of light for the treatment of cancer. Despite encouraging outcomes yielded by PDT, conventional PSs are faced with longstanding challenges such as poor water solubility, a short half-life, and off-target toxicity. Development of nanotherapeutics has shown great potential in overcoming this issue. The tumor microenvironment is inherently hypoxic, and this promotes tumor resistance to PDT, as it is oxygen-dependent. Photoactivated chemotherapy, an oxygen-independent light-based therapy, utilizes chemotherapeutic regimens that remain inert until exposed to light, allowing target-specific activation while minimizing off-target toxicity. Integration of these techniques can improve selectivity and yield synergistic cytotoxic effects that could improve cancer treatment.