Diagnosis and Post-Treatment Follow-Up Evaluation of Melasma Using Optical Coherence Tomography and Deep Learning.

Xinyuan Cao, Yifeng Lu, Tingting Zhu, Zhilong Yan, Ke Li, Jianhua Mo
{"title":"Diagnosis and Post-Treatment Follow-Up Evaluation of Melasma Using Optical Coherence Tomography and Deep Learning.","authors":"Xinyuan Cao, Yifeng Lu, Tingting Zhu, Zhilong Yan, Ke Li, Jianhua Mo","doi":"10.1002/jbio.70006","DOIUrl":null,"url":null,"abstract":"<p><p>Melasma is a common pigmentary disorder accompanied by tissue changes in composition and structure through the epidermis and dermis. In this study, we propose to employ optical coherence tomography (OCT) combined with deep learning techniques for melasma diagnostics. Specifically, a portable spectral domain OCT system with a handheld probe was developed for clinical skin imaging. Then, a diagnostic model was built based on the VGG16 neural network by adding a spatial attention mechanism. The results show that a good differentiation with an accuracy of 94.2% can be achieved among health datasets from healthy volunteers, and melasma and tissue-around-melasma datasets from melasma patients. Moreover, the same trained model was applied to treatment evaluation, showing a good capability to assess antivascular medicine treatment. Thus, it can be concluded that OCT combined with deep learning techniques has a good potential to aid in clinical diagnosis and treatment evaluation of melasma.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e70006"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.70006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Melasma is a common pigmentary disorder accompanied by tissue changes in composition and structure through the epidermis and dermis. In this study, we propose to employ optical coherence tomography (OCT) combined with deep learning techniques for melasma diagnostics. Specifically, a portable spectral domain OCT system with a handheld probe was developed for clinical skin imaging. Then, a diagnostic model was built based on the VGG16 neural network by adding a spatial attention mechanism. The results show that a good differentiation with an accuracy of 94.2% can be achieved among health datasets from healthy volunteers, and melasma and tissue-around-melasma datasets from melasma patients. Moreover, the same trained model was applied to treatment evaluation, showing a good capability to assess antivascular medicine treatment. Thus, it can be concluded that OCT combined with deep learning techniques has a good potential to aid in clinical diagnosis and treatment evaluation of melasma.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diagnosis and Post-Treatment Follow-Up Evaluation of Melasma Using Optical Coherence Tomography and Deep Learning. The Combination of Active-Targeted Photodynamic Therapy and Photoactivated Chemotherapy for Enhanced Cancer Treatment. Optomechanical Properties of Swine Skin Tissue Treated With a Nontoxic Optical Clearing Agent. Compact Monocular Video-Ophthalmoscope to Measure Retinal Reflectance Changes to Flicker Light Stimuli. Noncontact Detection of Blood Coagulation Dynamics Based on Speckle Deviation Analysis Using Optical Coherence Tomography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1