Yun-Peng Chu, Xue-Lin Yue, De-Hai Liu, Chuanyong Wang, Jiajia Ma
{"title":"Asymmetric synthesis of stereogenic-at-iridium(III) complexes through Pd-catalyzed kinetic resolution","authors":"Yun-Peng Chu, Xue-Lin Yue, De-Hai Liu, Chuanyong Wang, Jiajia Ma","doi":"10.1038/s41467-024-55341-4","DOIUrl":null,"url":null,"abstract":"<p>Metal-centered chirality has been recognized for over one century, and stereogenic-at-metal complexes where chirality is exclusively attributed to the metal center due to the specific coordination pattern of achiral ligands around the metal ion, has been broadly utilized in diverse areas of natural science. However, synthesis of these molecules remains constrained. Notably, while asymmetric catalysis has played a crucial role in the production of optically active organic molecules, its application to stereogenic-at-metal complexes is less straightforward. In this study, we introduce a kinetic resolution strategy employing a Pd-catalyzed asymmetric Suzuki-Miyaura cross-coupling reaction that efficiently produces optically active stereogenic-at-iridium complexes from racemic mixtures with high selectivity (achieving an <i>s</i>-factor of up to 133). This method enables further synthesis of complexes relevant to chiral metallodrugs and photosensitizers, underscoring the practical utility of our approach. Mechanistic studies suggest that reductive elimination is likely the turnover-limiting step over the Suzuki-Miyaura cross-coupling.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"48 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55341-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-centered chirality has been recognized for over one century, and stereogenic-at-metal complexes where chirality is exclusively attributed to the metal center due to the specific coordination pattern of achiral ligands around the metal ion, has been broadly utilized in diverse areas of natural science. However, synthesis of these molecules remains constrained. Notably, while asymmetric catalysis has played a crucial role in the production of optically active organic molecules, its application to stereogenic-at-metal complexes is less straightforward. In this study, we introduce a kinetic resolution strategy employing a Pd-catalyzed asymmetric Suzuki-Miyaura cross-coupling reaction that efficiently produces optically active stereogenic-at-iridium complexes from racemic mixtures with high selectivity (achieving an s-factor of up to 133). This method enables further synthesis of complexes relevant to chiral metallodrugs and photosensitizers, underscoring the practical utility of our approach. Mechanistic studies suggest that reductive elimination is likely the turnover-limiting step over the Suzuki-Miyaura cross-coupling.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.