{"title":"Self-Assembly of Mycolic Acid in Water: Monolayer or Bilayer","authors":"Yogendra Kumar, Subhadip Basu, Dipankar Chatterji, Anirban Ghosh, Narayanaswamy Jayaraman, Prabal Kumar Maiti","doi":"10.1021/acs.langmuir.4c03743","DOIUrl":null,"url":null,"abstract":"The enduring pathogenicity of <i>Mycobacterium tuberculosis</i> can be attributed to its lipid-rich cell wall, with mycolic acids (MAs) being a significant constituent. Different MAs’ fluidity and structural adaptability within the bacterial cell envelope significantly influence their physicochemical properties, operational capabilities, and pathogenic potential. Therefore, an accurate conformational representation of various MAs in aqueous media can provide insights into their potential role within the intricate structure of the bacterial cell wall. We have carried out MD simulations of MAs in an aqueous solution and shed light on various structural properties such as thickness, order parameters, area-per-MAs, conformational changes, and principle component (PC) in the single-component and mixture MAs monolayer. The different conformational populations in the monolayer were estimated using the distance-based analysis between the function groups represented as W, U, and Z conformations that lead to the fold of the MAs chain in the monolayer. Additionally, we have also simulated the mixture of alpha-MA (α-MA or AMA), methoxy-MA (MMA), and keto-MA (KMA) with 50.90% AMA, 36.36% MMA, and 12.72% KMA composition. The thickness of the MAs monolayer was observed to range from 5 to 7 nm with an average 820 kg/m<sup>3</sup> density for α-MA, MMA, and KMA quantitative agreement with experimental results. The mero chain (long chain), consisting of a functional group at the proximal and distal positions, tends to fold and exhibit a more disordered phase than the short chain. The keto-MA showed the greatest WUZ total conformations (35.32%) with decreasing trend of eZ > eU > aU > aZ folds in both single component and mixture. Our results are in quantitative agreement with the experimental observations. The sZ folds show the lowest conformational probability in monolayer assembly (0.75% in a single component and 1.1% in a mixture). However, eU and aU folds are most probable for AMA and MMA. One striking observation is the abundance of MA conformers beyond the known WUZ convention because of the wide range distribution of intramolecular distances and change in dihedral angles. From a thermodynamic perspective, all mycolic acid monolayers in this study within the microsecond-long simulation, MA molecules self-assembled, and the self-assembled monolayer was found to be stable. The conformation of MAs corresponding to lower free energy minima in the monolayer gives rise to tighter packing and a highly dense self-assembly. Such a highly packed assembly shows higher resistance for drug permeability. Therefore, we concluded that the monolayer formed by AMA will be more densely packed and may cause more resistance for the drug molecules.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"122 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03743","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The enduring pathogenicity of Mycobacterium tuberculosis can be attributed to its lipid-rich cell wall, with mycolic acids (MAs) being a significant constituent. Different MAs’ fluidity and structural adaptability within the bacterial cell envelope significantly influence their physicochemical properties, operational capabilities, and pathogenic potential. Therefore, an accurate conformational representation of various MAs in aqueous media can provide insights into their potential role within the intricate structure of the bacterial cell wall. We have carried out MD simulations of MAs in an aqueous solution and shed light on various structural properties such as thickness, order parameters, area-per-MAs, conformational changes, and principle component (PC) in the single-component and mixture MAs monolayer. The different conformational populations in the monolayer were estimated using the distance-based analysis between the function groups represented as W, U, and Z conformations that lead to the fold of the MAs chain in the monolayer. Additionally, we have also simulated the mixture of alpha-MA (α-MA or AMA), methoxy-MA (MMA), and keto-MA (KMA) with 50.90% AMA, 36.36% MMA, and 12.72% KMA composition. The thickness of the MAs monolayer was observed to range from 5 to 7 nm with an average 820 kg/m3 density for α-MA, MMA, and KMA quantitative agreement with experimental results. The mero chain (long chain), consisting of a functional group at the proximal and distal positions, tends to fold and exhibit a more disordered phase than the short chain. The keto-MA showed the greatest WUZ total conformations (35.32%) with decreasing trend of eZ > eU > aU > aZ folds in both single component and mixture. Our results are in quantitative agreement with the experimental observations. The sZ folds show the lowest conformational probability in monolayer assembly (0.75% in a single component and 1.1% in a mixture). However, eU and aU folds are most probable for AMA and MMA. One striking observation is the abundance of MA conformers beyond the known WUZ convention because of the wide range distribution of intramolecular distances and change in dihedral angles. From a thermodynamic perspective, all mycolic acid monolayers in this study within the microsecond-long simulation, MA molecules self-assembled, and the self-assembled monolayer was found to be stable. The conformation of MAs corresponding to lower free energy minima in the monolayer gives rise to tighter packing and a highly dense self-assembly. Such a highly packed assembly shows higher resistance for drug permeability. Therefore, we concluded that the monolayer formed by AMA will be more densely packed and may cause more resistance for the drug molecules.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).