{"title":"Beyond Surfactants: Janus Particles for Functional Interfaces and Coatings","authors":"Utsav Kumar Dey, Serkan Demirci, Ricardo Ortega, Thamer Rawah, Aneeba Chaudary, Fei Liu, Zhengtao Yang, Bingrui Huang, Shan Jiang","doi":"10.1021/acs.langmuir.4c04612","DOIUrl":null,"url":null,"abstract":"Janus particles (JPs), initially introduced as soft matter, have evolved into a distinctive class of materials that set them apart from traditional surfactants, dispersants, and block copolymers. This mini-review examines the similarities and differences between JPs and their molecular counterparts to elucidate the unique properties of JPs. Key studies on the assembly behavior of JPs in bulk phases and at interfaces are reviewed, highlighting their unique ability to form diverse, complex structures. The superior interfacial stability and tunable amphiphilicity of JPs make them highly effective emulsifiers and dispersants, particularly in emulsion polymerization systems. Beyond these applications, JPs demonstrate immense potential as coating materials, facilitating the development of eco-friendly, anti-icing, and antifouling coatings. A comparative discussion with zwitterionic polymers also highlights the distinctive advantages of each system. This review emphasizes that while JPs mimic some of the behaviors of small molecular surfactants, they also open doors to entirely new applications, making them indispensable as next-generation functional materials.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"27 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04612","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Janus particles (JPs), initially introduced as soft matter, have evolved into a distinctive class of materials that set them apart from traditional surfactants, dispersants, and block copolymers. This mini-review examines the similarities and differences between JPs and their molecular counterparts to elucidate the unique properties of JPs. Key studies on the assembly behavior of JPs in bulk phases and at interfaces are reviewed, highlighting their unique ability to form diverse, complex structures. The superior interfacial stability and tunable amphiphilicity of JPs make them highly effective emulsifiers and dispersants, particularly in emulsion polymerization systems. Beyond these applications, JPs demonstrate immense potential as coating materials, facilitating the development of eco-friendly, anti-icing, and antifouling coatings. A comparative discussion with zwitterionic polymers also highlights the distinctive advantages of each system. This review emphasizes that while JPs mimic some of the behaviors of small molecular surfactants, they also open doors to entirely new applications, making them indispensable as next-generation functional materials.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).