Sebastian Palacios , James J Collins , Domitilla Del Vecchio
{"title":"Machine learning for synthetic gene circuit engineering","authors":"Sebastian Palacios , James J Collins , Domitilla Del Vecchio","doi":"10.1016/j.copbio.2025.103263","DOIUrl":null,"url":null,"abstract":"<div><div>Synthetic biology leverages engineering principles to program biology with new functions for applications in medicine, energy, food, and the environment. A central aspect of synthetic biology is the creation of synthetic gene circuits — engineered biological circuits capable of performing operations, detecting signals, and regulating cellular functions. Their development involves large design spaces with intricate interactions among circuit components and the host cellular machinery. Here, we discuss the emerging role of machine learning in addressing these challenges. We articulate how machine learning may enhance synthetic gene circuit engineering, from individual components to circuit-level aspects, while highlighting associated challenges. We discuss potential hybrid approaches that combine machine learning with mechanistic modeling to leverage the advantages of data-driven models with the prescriptive ability of mechanism-based models. Machine learning and its integration with mechanistic modeling are poised to advance synthetic biology, but challenges need to be overcome for such efforts to realize their potential.</div></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"92 ","pages":"Article 103263"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166925000072","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic biology leverages engineering principles to program biology with new functions for applications in medicine, energy, food, and the environment. A central aspect of synthetic biology is the creation of synthetic gene circuits — engineered biological circuits capable of performing operations, detecting signals, and regulating cellular functions. Their development involves large design spaces with intricate interactions among circuit components and the host cellular machinery. Here, we discuss the emerging role of machine learning in addressing these challenges. We articulate how machine learning may enhance synthetic gene circuit engineering, from individual components to circuit-level aspects, while highlighting associated challenges. We discuss potential hybrid approaches that combine machine learning with mechanistic modeling to leverage the advantages of data-driven models with the prescriptive ability of mechanism-based models. Machine learning and its integration with mechanistic modeling are poised to advance synthetic biology, but challenges need to be overcome for such efforts to realize their potential.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.