Bárbara Schmitz-Abecassis, Ivo Cornelissen, Robin Jacobs, Jasmin A Kuhn-Keller, Linda Dirven, Martin Taphoorn, Matthias J P van Osch, Johan A F Koekkoek, Jeroen de Bresser
{"title":"Extension of T<sub>2</sub> Hyperintense Areas in Patients With a Glioma: A Comparison Between High-Quality 7 T MRI and Clinical Scans.","authors":"Bárbara Schmitz-Abecassis, Ivo Cornelissen, Robin Jacobs, Jasmin A Kuhn-Keller, Linda Dirven, Martin Taphoorn, Matthias J P van Osch, Johan A F Koekkoek, Jeroen de Bresser","doi":"10.1002/nbm.5316","DOIUrl":null,"url":null,"abstract":"<p><p>Gliomas are highly heterogeneous and often include a nonenhancing component that is hyperintense on T<sub>2</sub> weighted MRI. This can often not be distinguished from secondary gliosis and surrounding edema. We hypothesized that the extent of these T<sub>2</sub> hyperintense areas can more accurately be determined on high-quality 7 T MRI scans. We investigated the extension, volume, and complexity (shape) of T<sub>2</sub> hyperintense areas in patients with glioma on high-quality 7 T MRI scans compared to clinical MRI scans. T<sub>2</sub> hyperintense areas of 28 patients were visually compared and manually segmented on 7 T MRI and corresponding clinical (1.5 T/3 T) MRI scans, and the volume and shape markers were calculated and subsequently compared between scans. We showed extension of the T<sub>2</sub> hyperintense areas via the corpus callosum to the opposite hemisphere in four patients on the 7 T scans that was not visible on the clinical scan. Furthermore, we found a significantly larger volume of the T<sub>2</sub> hyperintense areas on the 7 T scans compared with the clinical scans (7 T scans: 28 mL [12.5-59.1]; clinical scans: 11.9 mL [11.8-56.6]; p = 0.01). We also found a higher complexity of the T<sub>2</sub> hyperintense areas on the 7 T scans compared with the clinical scans (convexity, solidity, concavity index and fractal dimension [p < 0.001]). Our study suggests that high-quality 7 T MRI scans may show more detail on the exact extension, size, and complexity of the T<sub>2</sub> hyperintense areas in patients with a glioma. This information could aid in more accurate planning of treatment, such as surgery and radiotherapy.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 3","pages":"e5316"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775408/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5316","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Gliomas are highly heterogeneous and often include a nonenhancing component that is hyperintense on T2 weighted MRI. This can often not be distinguished from secondary gliosis and surrounding edema. We hypothesized that the extent of these T2 hyperintense areas can more accurately be determined on high-quality 7 T MRI scans. We investigated the extension, volume, and complexity (shape) of T2 hyperintense areas in patients with glioma on high-quality 7 T MRI scans compared to clinical MRI scans. T2 hyperintense areas of 28 patients were visually compared and manually segmented on 7 T MRI and corresponding clinical (1.5 T/3 T) MRI scans, and the volume and shape markers were calculated and subsequently compared between scans. We showed extension of the T2 hyperintense areas via the corpus callosum to the opposite hemisphere in four patients on the 7 T scans that was not visible on the clinical scan. Furthermore, we found a significantly larger volume of the T2 hyperintense areas on the 7 T scans compared with the clinical scans (7 T scans: 28 mL [12.5-59.1]; clinical scans: 11.9 mL [11.8-56.6]; p = 0.01). We also found a higher complexity of the T2 hyperintense areas on the 7 T scans compared with the clinical scans (convexity, solidity, concavity index and fractal dimension [p < 0.001]). Our study suggests that high-quality 7 T MRI scans may show more detail on the exact extension, size, and complexity of the T2 hyperintense areas in patients with a glioma. This information could aid in more accurate planning of treatment, such as surgery and radiotherapy.
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.