High-Performance Flexible Microwave Absorption Films with Dynamic Adjustable Macrostructures and Alterable Electromagnetic Field Polarizations.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2025-01-31 DOI:10.1021/acsami.4c17865
Yu Chen, Bin Quan, Jiajia Liu, Xiaochi Lu, Litao Lin, Gaofeng Shao, You Wen, Ruiheng Jin, Xiying Shen, Xiaogu Huang
{"title":"High-Performance Flexible Microwave Absorption Films with Dynamic Adjustable Macrostructures and Alterable Electromagnetic Field Polarizations.","authors":"Yu Chen, Bin Quan, Jiajia Liu, Xiaochi Lu, Litao Lin, Gaofeng Shao, You Wen, Ruiheng Jin, Xiying Shen, Xiaogu Huang","doi":"10.1021/acsami.4c17865","DOIUrl":null,"url":null,"abstract":"<p><p>Electromagnetic wave absorption materials that can be utilized for freewill adhering or peeling from the target substrate remain a challenge to be solved. Compared to powder-based slurry and coatings, microwave absorption films possess clear advantages for their good flexibility and machinability. However, the matching thickness and effective bandwidth of 2D microwave absorption films cannot satisfy the current application requirements. As a result, it is necessary to complete a rational structural design based on flat films. In view of the fact that common film-forming methods based on blocks or hard bases cannot be changed or replaced easily once the structural construction is done, here solvent evaporation molding combined with phase change material filling was proposed for the first time to accomplish continuous structural transformation for flexible films. Unlike the original reflection loss (RL) peaks of flat films at around 17.0 GHz, a new absorption peak near 12.25 GHz was generated thanks to the design of coherent structures, resulting in the peaks' boundary merging and effective bandwidth extension. Specifically, 4.56 GHz of absorption bandwidth (RL < -5 dB) at 1.0 mm and 4.27 GHz (RL < -10 dB) of absorption bandwidth at 2.3 mm could be obtained by arch testing under electrical field polarization. Importantly, correlations between EM field polarizations and coherent structures as well as the rules of the absorption peak generation and frequency shift related to the structural variation have all been figured out. The presented laws of EM pattern evolutions for structural films in this work lay the foundation for the applications of high-efficiency microwave absorption materials in complex surfaces and switchable scenes.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17865","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electromagnetic wave absorption materials that can be utilized for freewill adhering or peeling from the target substrate remain a challenge to be solved. Compared to powder-based slurry and coatings, microwave absorption films possess clear advantages for their good flexibility and machinability. However, the matching thickness and effective bandwidth of 2D microwave absorption films cannot satisfy the current application requirements. As a result, it is necessary to complete a rational structural design based on flat films. In view of the fact that common film-forming methods based on blocks or hard bases cannot be changed or replaced easily once the structural construction is done, here solvent evaporation molding combined with phase change material filling was proposed for the first time to accomplish continuous structural transformation for flexible films. Unlike the original reflection loss (RL) peaks of flat films at around 17.0 GHz, a new absorption peak near 12.25 GHz was generated thanks to the design of coherent structures, resulting in the peaks' boundary merging and effective bandwidth extension. Specifically, 4.56 GHz of absorption bandwidth (RL < -5 dB) at 1.0 mm and 4.27 GHz (RL < -10 dB) of absorption bandwidth at 2.3 mm could be obtained by arch testing under electrical field polarization. Importantly, correlations between EM field polarizations and coherent structures as well as the rules of the absorption peak generation and frequency shift related to the structural variation have all been figured out. The presented laws of EM pattern evolutions for structural films in this work lay the foundation for the applications of high-efficiency microwave absorption materials in complex surfaces and switchable scenes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Au-In Alloy for Excellent Ohmic Contact in GeSe Devices with Enhanced Photodetector Properties. Decomposition of Binary Mixtures of DMC/EC, EMC/EC, and DEC/EC on Potassium Surfaces; GC, XPS, and Calculation. Eu-Doped TiO2 Coatings via One-Step In Situ Preparation Enhance Macrophage Polarization and Osseointegration of Implants. Heavy Atom as a Molecular Sensor of Electronic Density: The Advanced Dimer-Type Light-Emitting System for NIR Emission. High-Performance Flexible Microwave Absorption Films with Dynamic Adjustable Macrostructures and Alterable Electromagnetic Field Polarizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1