Yun Zhao, Shanel Dhani, Vladimir Gogvadze, Boris Zhivotovsky
{"title":"The crosstalk between SND1 and PDCD4 is associated with chemoresistance of non-small cell lung carcinoma cells.","authors":"Yun Zhao, Shanel Dhani, Vladimir Gogvadze, Boris Zhivotovsky","doi":"10.1038/s41420-025-02310-5","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) is highly resistant to chemo- or radiation therapy, which poses a huge challenge for treatment of advanced NSCLC. Previously, we demonstrated the oncogenic role of Tudor Staphylococcal nuclease (TSN, also known as Staphylococcal nuclease domain-containing protein 1, SND1), in regulating chemoresistance in NSCLC cells. Here, we showed that silencing of SND1 augmented the sensitivity of NSCLC cells to different chemotherapeutic drugs. Additionally, the expression of PDCD4 (a tumor suppressor highly associated with lung cancer) in NSCLC cells with low endogenous levels was attenuated by SND1 silencing, implying that SND1 might function as a molecular regulator upstream of PDCD4. PDCD4 is differentially expressed in various NSCLC cells. In the NSCLC cells (A549 and H23 cells) with low expression of PDCD4, despite the downregulation of PDCD4, silencing of SND1 still led to sensitization of NSCLC cells to treatment with different chemotherapeutic agents by the inhibition of autophagic activity. Thus, a novel correlation interlinking SND1 and PDCD4 in the regulation of NSCLC cells concerning chemotherapy was revealed, which contributes to understanding the mechanisms of chemoresistance in NSCLC.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"34"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782486/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02310-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) is highly resistant to chemo- or radiation therapy, which poses a huge challenge for treatment of advanced NSCLC. Previously, we demonstrated the oncogenic role of Tudor Staphylococcal nuclease (TSN, also known as Staphylococcal nuclease domain-containing protein 1, SND1), in regulating chemoresistance in NSCLC cells. Here, we showed that silencing of SND1 augmented the sensitivity of NSCLC cells to different chemotherapeutic drugs. Additionally, the expression of PDCD4 (a tumor suppressor highly associated with lung cancer) in NSCLC cells with low endogenous levels was attenuated by SND1 silencing, implying that SND1 might function as a molecular regulator upstream of PDCD4. PDCD4 is differentially expressed in various NSCLC cells. In the NSCLC cells (A549 and H23 cells) with low expression of PDCD4, despite the downregulation of PDCD4, silencing of SND1 still led to sensitization of NSCLC cells to treatment with different chemotherapeutic agents by the inhibition of autophagic activity. Thus, a novel correlation interlinking SND1 and PDCD4 in the regulation of NSCLC cells concerning chemotherapy was revealed, which contributes to understanding the mechanisms of chemoresistance in NSCLC.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.