Quentin Raas, Gregoire Haouy, Hortense de Calbiac, Elena Pasho, Anca Marian, Ida Chiara Guerrera, Marion Rosello, Patrick Oeckl, Filippo Del Bene, Alberto Catanese, Sorana Ciura, Edor Kabashi
{"title":"TBK1 is involved in programmed cell death and ALS-related pathways in novel zebrafish models.","authors":"Quentin Raas, Gregoire Haouy, Hortense de Calbiac, Elena Pasho, Anca Marian, Ida Chiara Guerrera, Marion Rosello, Patrick Oeckl, Filippo Del Bene, Alberto Catanese, Sorana Ciura, Edor Kabashi","doi":"10.1038/s41420-025-02374-3","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogenic mutations within the TBK1 gene leading to haploinsufficiency are causative of amyotrophic lateral sclerosis (ALS). This gene is linked to autophagy and inflammation, two cellular mechanisms reported to be dysregulated in ALS patients, although its functional role in the pathogenesis could involve other players. We targeted the TBK1 ortholog in zebrafish, an optimal vertebrate model for investigating genetic defects in neurological disorders. We generated zebrafish models with invalidating tbk1 mutations using CRISPR-Cas9 or tbk1 knockdown models using antisense morpholino oligonucleotide (AMO). The early motor phenotype of zebrafish injected with tbk1 AMO beginning at 2 days post fertilization (dpf) is associated with the degeneration of motor neurons. In parallel, CRISPR-induced tbk1 mutants exhibit impaired motor function beginning at 5 dpf and increased lethality beginning at 9 dpf. A metabolomic analysis showed an association between tbk1 loss and severe dysregulation of nicotinamide metabolism, and incubation with nicotinamide riboside rescued the motor behavior of tbk1 mutant zebrafish. Furthermore, a proteomic analysis revealed increased levels of inflammatory markers and dysregulation of programmed cell death pathways. Necroptosis appeared to be strongly activated in TBK1 fish, and larvae treated with the necroptosis inhibitor necrosulfonamide exhibited improved survival. Finally, a combined analysis of mutant zebrafish and TBK1-mutant human motor neurons revealed dysregulation of the KEGG pathway \"ALS\", with disrupted nuclear-cytoplasmic transport and increased expression of STAT1. These findings point toward a major role for necroptosis in the degenerative features and premature lethality observed in tbk1 mutant zebrafish. Overall, the novel tbk1-deficient zebrafish models offer a great opportunity to better understand the cascade of events leading from the loss of tbk1 expression to the onset of motor deficits, with involvement of a metabolic defect and increased cell death, and for the development of novel therapeutic avenues for ALS and related neuromuscular diseases.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"98"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02374-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pathogenic mutations within the TBK1 gene leading to haploinsufficiency are causative of amyotrophic lateral sclerosis (ALS). This gene is linked to autophagy and inflammation, two cellular mechanisms reported to be dysregulated in ALS patients, although its functional role in the pathogenesis could involve other players. We targeted the TBK1 ortholog in zebrafish, an optimal vertebrate model for investigating genetic defects in neurological disorders. We generated zebrafish models with invalidating tbk1 mutations using CRISPR-Cas9 or tbk1 knockdown models using antisense morpholino oligonucleotide (AMO). The early motor phenotype of zebrafish injected with tbk1 AMO beginning at 2 days post fertilization (dpf) is associated with the degeneration of motor neurons. In parallel, CRISPR-induced tbk1 mutants exhibit impaired motor function beginning at 5 dpf and increased lethality beginning at 9 dpf. A metabolomic analysis showed an association between tbk1 loss and severe dysregulation of nicotinamide metabolism, and incubation with nicotinamide riboside rescued the motor behavior of tbk1 mutant zebrafish. Furthermore, a proteomic analysis revealed increased levels of inflammatory markers and dysregulation of programmed cell death pathways. Necroptosis appeared to be strongly activated in TBK1 fish, and larvae treated with the necroptosis inhibitor necrosulfonamide exhibited improved survival. Finally, a combined analysis of mutant zebrafish and TBK1-mutant human motor neurons revealed dysregulation of the KEGG pathway "ALS", with disrupted nuclear-cytoplasmic transport and increased expression of STAT1. These findings point toward a major role for necroptosis in the degenerative features and premature lethality observed in tbk1 mutant zebrafish. Overall, the novel tbk1-deficient zebrafish models offer a great opportunity to better understand the cascade of events leading from the loss of tbk1 expression to the onset of motor deficits, with involvement of a metabolic defect and increased cell death, and for the development of novel therapeutic avenues for ALS and related neuromuscular diseases.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.