Maria Molano-Fernández, Ian D Hickson, Héctor Herranz
{"title":"Replication stress promotes cellular transformation in Drosophila epithelium.","authors":"Maria Molano-Fernández, Ian D Hickson, Héctor Herranz","doi":"10.1038/s41420-025-02383-2","DOIUrl":null,"url":null,"abstract":"<p><p>The accurate control of DNA replication is crucial for the maintenance of genomic stability and cell viability. In this study, we explore the consequences of depleting the replicative DNA Polymerase α (POLA) in the wing disc of Drosophila melanogaster. Our findings reveal that reduced POLA activity induces DNA replication stress and activates the replication checkpoint in vivo. Consistent with this, we demonstrate that dATR, a key component in DNA replication checkpoint signaling, is essential for the maintenance of tissue integrity under conditions of compromised POLA activity. We show that cells within the wing disc exhibiting reduced POLA activity arrest in the G2 phase and undergo p53-dependent apoptosis. We also reveal a critical role for DNA Ligase 4 in sustaining cell viability when POLA function is impaired. Most notably, we report the appearance of oncogenic traits in wing disc cells with diminished POLA activity when apoptosis is suppressed. In this context, the overexpression of the oncogene cdc25/string enhances the oncogenic phenotype. These results indicate that a combination of oncogenic activation, replication stress, and suppression of apoptosis is sufficient to promote the emergence of hallmarks of tumorigenesis, highlighting major implications for cancer development in humans.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"96"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02383-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate control of DNA replication is crucial for the maintenance of genomic stability and cell viability. In this study, we explore the consequences of depleting the replicative DNA Polymerase α (POLA) in the wing disc of Drosophila melanogaster. Our findings reveal that reduced POLA activity induces DNA replication stress and activates the replication checkpoint in vivo. Consistent with this, we demonstrate that dATR, a key component in DNA replication checkpoint signaling, is essential for the maintenance of tissue integrity under conditions of compromised POLA activity. We show that cells within the wing disc exhibiting reduced POLA activity arrest in the G2 phase and undergo p53-dependent apoptosis. We also reveal a critical role for DNA Ligase 4 in sustaining cell viability when POLA function is impaired. Most notably, we report the appearance of oncogenic traits in wing disc cells with diminished POLA activity when apoptosis is suppressed. In this context, the overexpression of the oncogene cdc25/string enhances the oncogenic phenotype. These results indicate that a combination of oncogenic activation, replication stress, and suppression of apoptosis is sufficient to promote the emergence of hallmarks of tumorigenesis, highlighting major implications for cancer development in humans.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.